強調音声の効率的サンプリングによる DNN の不確定性学習とデコード法* ○太刀岡勇気 (三菱電機・情報総研), 渡部晋治 (MERL)

1 はじめに

深層神経回路網 (Deep Neural Network; DNN) によ り、音声認識の性能は大きく向上した。我々も騒音下の 音声認識タスクにより、DNN の有効性を確認した [1]。 一方で、ガウス混合分布 (Gaussian mixture model; GMM) のために開発された手法を DNN に適用する 研究も盛んである。本報では、GMM に基づく騒音下 の音声認識では有効性が確認されている不確定性手法 を DNN に適応することをめざす。(INTERSPEECH 2015 ではこれに関連するスペシャルセッションが開 かれた。)

騒音条件では、DNNを使ったシステムであっても、 音声強調により、音声認識性能は大きく改善する [2, 3]。しかしながら、音声に騒音抑圧に起因する歪みが 加わることで音声認識性能が大きく低下する。特に 学習時とデコード時の騒音条件にミスマッチがある 場合もしくはデコード時のみに音声強調をした場合、 音響モデルのミスマッチと音声の歪みによって音声認 識性能が低下するため、この問題は顕著になる。

この問題に対処するため、音声強調による歪みを 表す信頼性指標に基づき特徴量を調整する方法がい くつか提案されている。GMM においては、特徴量 の不確定性がガウス分布で表されるため、GMM の 尤度はそれらの特徴量の不確定性の観点で期待値操 作に基づき計算される。期待値は確率変数の周辺化 により解析的に計算される。これにより、音声強調に よりもたらされる歪みに対して音響モデルをより頑 健にすることができる。この方法は不確定性デコー ディング手法と呼ばれている。結果として、入力特徴 量に対する音響モデルのガウス分布の共分散行列は、 不確定性 (すなわち信頼性)の程度に応じて調整され る。多くの不確定性を扱う手法が提案され、GMM に 対するそれらの有効性が実証されている [4,5]。例え ば、文献 [4,5] では騒音音声と強調音声の特徴量の差 分ベクトルを使っている。しかし、DNN には非線形 の活性化関数が含まれているため、不確定性の伝播 を解析的に扱うことは困難である。

本報では DNN のための、不確定性学習及びデコー ディング手法を提案する。DNN のスコア計算と DNN の学習のために近似的な期待値演算を行う文献 [6] と は異なり、提案法はモンテカルロ法により不確定性に 基づく入力特徴量をサンプルする。ただし、DNN の 学習には多大な計算が必要なため、効率的なサンプリ ングが欠かせない。提案法では、音声強調前後の内挿 ベクトルに特化する。確率的に内挿係数をサンプリ ングすることで、強調音声の特徴量のベクトルの分 布を効率的に表すことができる。加えて、デコーディ ング時にもサンプリングを行い、各サンプルに対す る複数の認識仮説を統合することでさらに認識性能 を向上させる。

2 DNN 不確定性学習/デコーディング

不確定性手法の背景にある理論は、式(1)に示す条 件付き期待値操作に基づいている。

 $\mathbb{E}[f(\boldsymbol{y}_{1:T})|\boldsymbol{x}_{1:T}] \triangleq \int f(\boldsymbol{y}_{1:T})p(\boldsymbol{y}_{1:T}|\boldsymbol{x}_{1:T})d\boldsymbol{y}_{1:T},$ (1)
ここで、 $\boldsymbol{x}_{1:T} = \{\boldsymbol{x}_t | t = 1, \dots, T\}$ は、T フレーム
からなる騒音音声の特徴量の時系列ベクトルであり、 $\boldsymbol{y}_{1:T}$ は強調音声の時系列ベクトルである。f()は、適
用対象に応じてデコーディング (2.1 節参照) や学習
(2.2 節参照) を示す。 $p(\boldsymbol{y}_{1:T}|\boldsymbol{x}_{1:T})$ は、不確定性を含
んだ形での強調音声の時系列の確率的表現である (2.3
節参照)。

2.1 DNN 不確定性デコーディング

まず隠れマルコフモデル (Hidden Markov model; HMM) と DNN を統合したハイブリット構造の DNN のための不確定性デコーディングに焦点を当てる。こ の枠組みでは、式 (1) の f() は以下の実際のデコー ディング過程で表される。

$$\hat{W} = \mathbb{E} \left[\arg \max_{W} p(\boldsymbol{y}_{1:T} | \mathcal{H}_{W}) p(W) \middle| \boldsymbol{x}_{1:T} \right],$$

$$= \mathbb{E} \left[W_{\boldsymbol{y}_{1:T}} | \boldsymbol{x}_{1:T} \right],$$
(2)

W は単語系列、 \mathcal{H}_W はW が与えられた時に起こりうる HMM の状態系列、 $W_{y_{1:T}}$ は入力特徴量 $y_{1:T}$ が与えられたときのデコードされた単語系列である。いくつかの GMM に基づく従来の不確定性手法は、式(2) に対する解析解を与える。 $p(y_{1:T}|x_{1:T})$ に対するガウス分布に基づく不確定性を用いて、 $\mathbb{E}[p(y_{1:T}|\mathcal{H}_W)|x_{1:T}]$ についての期待値操作を積分消去することに注意されたい。しかしながら、DNN に基づく音響モデルに対しては非線形の活性化関数があるために、このような解析解を得ることは出来ず、なんらかの近似が必要となる[6]。

^{*}Uncertainty training and decoding methods for DNN based on efficient sampling of enhanced features, by TACHIOKA, Yuuki (Mitsubishi Electric Corporation); WATANABE, Shinji (MERL).

Fig. 1 Noisy feature \boldsymbol{x} and enhanced feature $\hat{\boldsymbol{y}}$, and the sampling of feature \boldsymbol{y} based on an interpolation between them.

提案法では、近似を使うというよりは、モンテカ ルロサンプリングに基づき、式 (2) から直接的な期待 値操作をする。ただし積分操作というよりは、仮説 レベルで複数の出力を平均化する。これらの出力は、 異なる特徴量サンプルに対して別々にデコーディング することで得られる。この方法の欠点はすべてのサ ンプルについて音声認識のデコーディングの計算が 必要となることである。これはラティスリスコアリン グで多少計算量を減らすことができるにしても問題 となりうる。加えて、起こりうる入力特徴量空間を完 全に被覆するように $y_{1:T}$ をサンプルすることは非常 に困難である。系列の入力特徴量 $p(y_{1:T}|x_{1:T})$ の分 布を直接考慮するのではなくて、tフレームのサンプ ルされた入力特徴量 y_t の関係性を、 $x_t と \hat{y}_t$ の間の 線形補間に基づき、

$$\boldsymbol{y}_t = \hat{\boldsymbol{y}}_t + \alpha(\boldsymbol{x}_t - \hat{\boldsymbol{y}}_t) \text{ for } t = 1, \dots, T,$$
 (3)

のように決定的に仮定する。 α は線形補間係数で ある。この線形補間の幾何学的な意味解釈を図 1 に示す。本手法は、騒音音声の特徴量と音声強調 された音声の特徴量の差異から得られる共分散行 列による観測量の近似的な分布 $p(\mathbf{y}_{1:T}|\mathbf{x}_{1:T}) \approx$ $\prod_{t=1}^{T} \mathcal{N}(\mathbf{y}_t | \hat{\mathbf{y}}_t, [\alpha(\mathbf{x}_t - \hat{\mathbf{y}}_t)(\mathbf{x}_t - \hat{\mathbf{y}}_t)^{\top}]) [4, 5] に基づ$ く不確定性デコーディングに想を得ている。次に線形 $内挿係数 <math>\alpha$ を確率変数であるとみなすことによって、 1 次元の α を比較的少ない数のサンプルにより効率 的にサンプルすることができる。

よって、提案の N 個のモンテカルロサンプルを用 いた不確定性デコーディングの方法は式 (2) から以下 のように表される。

$$\hat{W} = R\left[\left\{W_{\boldsymbol{y}_{1:T}^{n}}\right\}_{n=1}^{N}\right],$$

$$\boldsymbol{y}_{t}^{n} = \hat{\boldsymbol{y}}_{t} + \alpha^{n}(\boldsymbol{x}_{t} - \hat{\boldsymbol{y}}_{t}) \text{ for } t = 1, \dots, T, \ \alpha^{n} \sim p(\alpha),$$

(4)

 $R[\cdot]$ は仮説レベルでの統合により実現され、例え ば、Recognizer Output Voting Error Reduction (ROVER) [7] が使える。 $\alpha^n \sim p(\alpha)$ の意味は、n番 目の α が分布 $p(\alpha)$ からサンプルされるということで ある。節 2.3 で、 $p(\alpha)$ についてより詳細に議論する。

2.2 DNN 不確定性学習

節 2.1 での記述と同様にして、与えられた単語系列 W に基づく不確定性学習は、式 (1) における f() を 学習手順で置き換えることにより、

$$\hat{\Theta} = \mathbb{E}\left[\arg\min_{\Theta} \mathcal{F}_{\Theta}(\boldsymbol{y}_{1:T}, W) \middle| \boldsymbol{x}_{1:T}\right], \quad (5)$$

のようにあらわすことができる。モデルパラメータを Θ とするとき、 \mathcal{F}_{Θ} は DNN の評価関数であり、例え ばクロスエントロピー (cross entropy; CE) 基準や、 系列の識別的基準が考えられる。

入力特徴量は、2.1 節に提案の不確定性デコーディ ングと同じ方法で、線形内挿係数の分布 *p*(α) に基づ きサンプリングする。式 (5) のパラメータについての 期待値操作の代わりに、評価関数について

$$\Theta = \underset{\Theta}{\arg\min} \mathbb{E} \left[\mathcal{F}_{\Theta}(\boldsymbol{y}_{1:T}, W) | \boldsymbol{x}_{1:T} \right],$$

$$\approx \underset{\Theta}{\arg\min} \sum_{n=1}^{N} \mathcal{F}_{\Theta}(\boldsymbol{y}_{1:T}^{n}, W),$$
where
$$\boldsymbol{y}_{t}^{n} = \hat{\boldsymbol{y}}_{t} + \alpha^{n} (\boldsymbol{x}_{t} - \hat{\boldsymbol{y}}_{t}) \forall t, \quad \alpha^{n} \sim p(\alpha).$$
(6)

のように、モンテカルロサンプリングを導入する。CE 学習に対しては、モンテカルロサンプリングの評価 関数は

$$\sum_{n=1}^{N} \mathcal{F}_{\Theta}^{\text{CE}}(\boldsymbol{y}_{1:T}^{n}, W) = -\sum_{t=1}^{T} \sum_{n=1}^{N} \log p_{\Theta}(s_t | \boldsymbol{y}_t^{n}), \quad (7)$$

のように表される。*st* はフレーム*t* における HMM 状態であり、W が与えられた時の Viterbi アライメ ントにより得られる。よって、単にサンプルされた学 習データを入力特徴量として使うことで、評価関数に ついての加法性により、期待値操作が可能となる。こ の手法は DNN 学習における系列の識別学習 (例 [8]) にも適用可能である。

2.3 線形内挿係数の確率過程

各発話に対して、複数の α をサンプルするために、 式 (8) の 1 次元の K 混合 GMM を用いる。

$$p(\alpha) = \sum_{k=1}^{K} w_k \mathcal{N}(\alpha | \mu_k, \sigma), \qquad (8)$$

ここで平均 μ_k は経験的に区間 [0,1] の内のいくつか の値に決定した。これにより、入力特徴量 y_t は騒音 特徴量 x_t と音声強調された特徴量 \hat{y}_t の中間でサンプ ルされることとなる。分散 σ と混合重み $w_k(=1/K)$ は固定とし、いくつかの実験においてはさらに $\alpha \in$ { μ_k } $_{k=1}^K$ も固定した (すなわち $\sigma \to 0$)。

3.1 コーパス

ここでは 2 つの騒音下および残響下音声認識タス クを用いて、提案法の有効性を示す。初めに用いる のは、第 2 回 CHiME チャレンジ トラック 2 [9] で ある。これは中程度の語彙のタスクであり、音声発 話は Wall Street Journal (WSJ)のデータベースより 採られている。これに非定常騒音が、信号対雑音比 (signal-to-noise ratio; SNR) で -6 から 9 dB になるよ うに混ぜられている。多チャンネル非負値行列因子分 解 (multi-channel non-negative matrix factorization; MNMF) アルゴリズム [10] により、音声強調した。

2つめのコーパスは、REVERB チャレンジ [11] の シミュレーションデータである。これは残響環境下 におけるタスクで、発話は同じく WSJのデータベー スより採られている。音声データは、クリーン音声 に6種の室内インパルス応答を畳み込むことで生成さ れている。6つのインパルス応答の内訳は、3つの残 響時間が 0.25、0.5、0.75 秒と異なる室において、マ イクと音源の距離が 0.5 m (near) もしくは 2 m (far) の 2種収録されている。これに比較的定常な騒音が SNR20 dB で重畳されている。8 つのマイクが半径 0.1 m の円上に配置されている。到来方向推定に基づ く多チャンネルビームフォーミングおよび単チャンネ ルの残響除去が適用されている。

3.2 音声認識の設定

音声認識の設定は2つのタスクに共通である。言語 モデル重みと言った、いくつかのチューニングが必要 なパラメータは開発セットの単語誤り率 (word error rate; WER) に基づいて最適化した。語彙サイズは5k であり、トライグラムの言語モデルを使った。音声認 識システムは、Kaldi ツールキット [12] を用いて構築 した。提案の不確定性学習を行う際には、過学習を防 ぐため、学習率を低減している。内挿学習データは元 の学習データと似ているので、過学習しやすいため である。40 次元のフィルタバンク特徴量とその動的 特徴量 ($\Delta \ge \Delta \Delta$)を特徴量として用いた。DNN 音 響モデルを CE 基準により学習した後に、系列のベ イズリスク最小化 (sequential minimum Bayes risk; sMBR) 識別学習を行った [8]。

3.3 6 つのシステム設定

以下に示す6つのシステムを用意した。

- 1. noisy: *x* で学習し、*x* をデコードする。
- 2. enhan (強調音声; enhanced): y で学習し、 \hat{y} を デコードする。

- 3. diff (差異; difference): $[\hat{\boldsymbol{y}}^{\top}, [\boldsymbol{x} \hat{\boldsymbol{y}}]^{\top}]^{\top}$ をデコー ドする。
- 4. uncert(t) (不確定性学習; uncertainty training): \hat{y} をデコードする。ただしモデルは $\hat{y} + \alpha [x - \hat{y}]$ に対し、 $\mu_k \in \{0, 0.1, 0.2\}$ で学習する。
- 5. uncert(d) (不確定性デコーディング; uncertainty decoding): $\hat{y} + \alpha [x \hat{y}] \ \epsilon \ \mu_k \in \{0, 0.1, 0.2\}$ で デコードする。ただしモデルは \hat{y} で学習する。複数の仮説を ROVER により統合する。
- uncert(t,d) (不確定性学習/デコーディングの統合): ŷ + α[x ŷ] を μk ∈ {0,0.1,0.2} でデコードする。モデルも同じ特徴量で学習する。複数の仮説を ROVER により統合する。

4 結果と考察

4.1 第2回 CHiME チャレンジ トラック2

表1には、第2回 CHiME チャレンジ開発セット でのWERを示す。MNMFによる音声強調により、 DNN の音声認識システムの性能が堅調に向上した。 差異特徴量を入力特徴量に結合した場合(表の"diff"、 これは文献 [4,5]を模したもの)には、CEモデルに対 して WER が 0.23%低減、sMBR(識別学習) モデルに 対しては0.31%の低減となった。この実験では固定の α を用いている。すなわち、 $\alpha \in \{0, 0.1, 0.2\}$ である (式(8)のσ→0)。提案の不確定性デコーディング(表 中 "uncert(d)") により、WER は CE モデル、sMBR モデルそれぞれに対して 0.37%、0.38%低減した。こ の場合、モデル再学習が不必要となるが、デコーディ ングのための計算時間は増加する。提案の不確定性 学習 (表中 "uncert(t)") により、WER は CE モデル、 sMBR モデルそれぞれに対して 0.75%、0.55% 低減し た。この場合、学習にかかる時間は増加するものの、 デコーディングにかかる時間は "enhan" や "diff" と ほぼ同じである。DNN 音響モデルにおいては、不確 定性をデコーディング時に考慮するよりも学習時に 考慮する方が効率が良い。不確定性を学習時デコー ディング時の双方に導入すると (表中 "uncert(t,d)")、 WER は顕著に向上し、CE モデル、sMBR モデルそ れぞれに対して 0.92%、1.12%低減した。

表1には、内挿点に対してランダムな外乱を導入 することの効果を示している (表中 '+p')(式 (8)の $\sigma = 0.015$)。不確定性デコーディング ("uncert(d)") ではこの手法はすべての σ に対して性能を向上させた わけではなかったが、不確定性学習 ("uncert(t)") と 両者の組み合わせ ("uncert(t,d)") に対しては性能が 向上した。 $\sigma = 0.015$ の場合、CE 音響モデルに対し て、学習では WER は 0.31%向上、学習/デコーディ

	dt		et	
	CE	sMBR	CE	sMBR
noisy	31.58	28.90	26.56	24.59
enhan	27.89	24.92	23.09	20.29
diff	27.66	24.61	22.97	20.70
uncert(t)	27.14	24.37	22.40	20.51
+p	26.83	24.95	22.21	20.38
uncert(d)	27.52	24.54	22.69	19.99
+p	27.56	24.53	22.69	20.00
uncert(t,d)	26.97	23.80	22.11	20.10
+p	26.26	24.24	21.96	19.86

Table 1 Average WER [%] on the second CHiME challenge (Track 2).

ングの併用では0.71%の向上が見られた。しかしなが ら、この手法では sMBR モデルの音声認識性能を向 上させることはできなかった。

表1には、評価セットでのWERも示している。こ の場合、不確定性の導入により、デコーディングの よりも学習の際の性能が向上し、両者の組み合わせ "uncert(t,d)"の場合に最も良い性能を達成した。こ の傾向は開発セットでの場合と同様であった。この場 合、不確定性学習および学習/デコーディングの併用 に対して、ランダムな外乱を導入することで、性能は sMBR モデルのときでさえも向上した。これにより、 外乱によって音響モデルの未知データに対する頑健 性を向上させることができることを示した。最後に、 提案法は "enhan" から WER を、CE モデルの場合 1.13%、sMBR モデルの場合 0.43%低減させ、同様に して "diff"を 0.12%、-0.41%上回った。これらの結 果から提案法の有効性を確認できた。

4.2 REVERB チャレンジ

表2には REVERB チャレンジにおける WER を 示す。ここでは固定のαを用いた。まず開発セット での WER を見ると、CHiME チャレンジの場合より もベースラインの性能が高いものの、提案法はやは り有効であり、傾向も似ている。すなわち、提案法は デコーディング時よりも学習時に有効であり、それら を組み合わせることでさらに性能が向上した。

さらに評価セットにおける WER を見ると、提案 法により、"enhan" から WER を、CE モデルの場合 0.52%、sMBR モデルの場合 0.15%低減させ、"diff" をそれぞれ 0.13%、-0.01%上回った。これより、提案 法は 2 つのタスクにおいて音声認識性能を改善した。

5 まとめと課題

本報では、DNN 音響モデルのための不確定性学習/ デコーディング手法を提案した。提案法は DNN の学 Table 2 Average WER [%] on the REVERB challenge simulation data.

	dt		\mathbf{et}	
	CE	sMBR	CE	sMBR
noisy	8.56	6.95	8.84	7.34
enhan	7.66	6.04	7.79	6.57
diff	7.19	5.96	7.66	6.58
uncert(t)	7.21	5.86	7.32	6.56
uncert(d)	7.64	6.04	7.79	6.51
uncert(t,d)	7.15	5.82	7.27	6.42

習とデコーディングの手順や構造を全く変えること なく使うことができる。不確定性を学習時とデコー ディング時それぞれに導入した場合を比較すること で、学習時に不確定性を導入することが最も効果的 であることが分かった。加えて、内挿点を乱数により 摂動を与えることで性能をさらに改善することがで きた。2つの騒音残響環境下の音声認識タスクにより 提案法の有効性を確認した。今後の課題は、騒音の種 類に応じて最適な内挿点を自動的に決定するアルゴ リズムの開発である。

参考文献

- Y. Tachioka et. al, Discriminative methods for noise robust speech recognition: A CHiME challenge benchmark, the 2nd CHiME Workshop, pp.19–24, 2013.
- [2] T. Yoshioka et. al, The NTT CHiME-3 system: Advances in speech enhancement and recognition for mobile multi-microphone devices, ASRU, pp.436–443, 2015.
- [3] T. Hori et. al, The MERL/SRI system for the 3rd CHiME challenge using beamforming, robust feature extraction, and advanced speech recognition, ASRU, pp.475–481, 2015.
- [4] M. Delcroix et. al, Static and dynamic variance compensation for recognition of reverberant speech with dereverberation preprocessing, IEEE Trans. on ASLP, 324– 334, 2009.
- [5] D. Kolossa et. al, Independent component analysis and time-frequency masking for speech recognition in multitalker conditions, EURASIP J. on Audio, Speech, and Music Processing, ID 651420, 2010.
- [6] R. Astudillo and J. daSilva Neto, "Propagation of uncertainty through multilayer perceptrons for robust automatic speech recognition," INTERSPEECH, 2011.
- [7] J. Fiscus, "A post-processing system to yield reduced error word rates: Recognizer output voting error reduction (ROVER)," ASRU, pp.347–354, 1997.
- [8] K. Veselý et. al, "Sequence-discriminative training of deep neural networks," INTERSPEECH, pp.2345– 2349, 2013.
- [9] E. Vincent et. al, "The second 'CHiME' speech separation and recognition challenge: Datasets, tasks and baselines," ICASSP, pp.126–130, 2013.
- [10] A. Ozerov et. al, "A general flexible framework for the handling of prior information in audio source separation," IEEE Trans. on ASLP, 20, 1118–1133, 2012.
- [11] K. Kinoshita et. al, "The REVERB challenge: A common evaluation framework for dereverberation and recognition of reverberant speech," WASPAA, 2013.
- [12] D. Povey et. al, "The Kaldi speech recognition toolkit," ASRU, pp.1–4, 2011.