音声認識システムの統合を目的とした識別学習の枠組み*

○太刀岡勇気 (三菱電機・情報総研), 渡部晋治, ルルージョナトン, ハーシージョン (MERL)

はじめに

異なる音声認識システムの仮説を統合すること で、Recognizer Output Voting Error Reduction (ROVER) [1] のように、たとえ補助システムの性能 が元のシステムの性能よりも低くとも、音声認識の性 能改善を図ることができる。効率的にシステムを統 合するためには、異なる傾向を持つ仮説を統合する ことが重要であり、補助システムの仮説が元のシステ ムの仮説と似通っていたり、誤りが過分の場合には、 統合により性能が向上しないこともあり得る。ただし 古典的なシステム統合手法は、理論的な背景に乏し く、補助システムの構築には試行錯誤を必要とする。

この問題に対処するため、我々は、正解ラベルと元 のシステムと補助システムの仮説の傾向の関連性が 明らかな、相互情報量最大化 (MMI) 基準に基づく、 音響モデルの学習法を提案した[2]。本報では、すで に提案した学習法を拡張し、システム統合のための 系列識別学習の一般的な枠組みを提案する。提案法 は識別的音響モデルや特徴量変換といった幅広いモ デル学習に対応できる。ここでは、音響モデル (すで に提案したガウス混合モデル (GMM) に加え、深層 神経回路網 (DNN)) と識別的特徴量変換へ適用した。 我々は識別学習の目的関数を一般化し、正解ラベルに 関する目的関数と、元のシステムの仮説に関する目 的関数の調整ができるようにした。提案法は、従来の ラティスに基づく識別学習の単純な拡張であること から、識別学習と明確な類似性を持つという利点が ある。これに加え、提案法はマージンを考慮した識別 学習になっており、補助システムの出力を元のシステ ムの出力からどの程度離すかを調整できる。

2節において、補助システム構築のための一般的な 識別学習の枠組みについて述べる。音響モデル (DNN) の系列の識別学習 (3節) や識別的特徴量変換 (4節) に 適用し、5節で、提案法の有効性を実験的に検証する。

補助システムの識別学習

日本音響学会講演論文集

提案法では、補助システムのモデルは、ある初期モ デルから識別的に学習を進めることで構築する。提案 の補助システムの識別学習法は、一般的な識別学習の 原理を拡張したものになっている。 Q 個の既存のシス テムに対し、提案の目的関数 Fc は、通常の識別学習

の目的関数 \mathcal{F} (正解ラベル ω_r と関連) から、元のシス テムにより生成された 1 位の仮説 $\omega_{q,1}$ $(q=1,\ldots,Q)$ に関連する項を引き去ったものである。

$$\mathcal{F}_{\varphi}^{c}(\omega_{r}, \omega_{q,1}) = (1+\alpha)\mathcal{F}_{\varphi}(\omega_{r}) - \frac{\alpha}{Q} \sum_{q=1}^{Q} \mathcal{F}_{\varphi}(\omega_{q,1})$$
(1)

φは最適化される補助システムのモデルパラメータの 組であり、 α はスケーリング係数である。もし α が 零の時には、目的関数は旧来の識別学習のそれに一 致する。式(1)の第1項は識別学習の基準に従って、 当該システムの性能を向上させる一方で、第2項は 当該システムを元のシステムの出力結果から遠ざけ る役割を持っている。 α は両者のバランスを取ってい る。次節以降、式(1)における目的関数とモデルパラ メータの具体的な形を検討する。

3 音響モデルの識別学習

本節では、MMI 基準を上述の枠組みに適用する。 MMI 学習では、正解ラベル列 ω_r と初期モデル (例え ば ML モデル) により生成されたラティス上の仮説 ω に対する、以下に示す目的関数を最大化する。

$$\mathcal{F}_{\lambda}^{\text{MMI}}(\omega_r) = \ln \frac{P_{\lambda}(\omega_r, \mathbf{X})}{\sum_{\omega} P_{\lambda}(\omega, \mathbf{X})}$$

$$= \ln \frac{\sum_{s_r \in \mathcal{S}_{\omega_r}} p_{\lambda}(s_r, \mathbf{X})^{\kappa} p_L(\omega_r)}{\sum_{\omega} \sum_{s \in \mathcal{S}_{\omega}} p_{\lambda}(s, \mathbf{X})^{\kappa} p_L(\omega)}$$
(3)

$$= \ln \frac{\sum_{s_r \in \mathcal{S}_{\omega_r}} p_{\lambda} (s_r, \boldsymbol{X})^{\kappa} p_L(\omega_r)}{\sum_{c_r \in \mathcal{S}_r} p_{\lambda} (s, \boldsymbol{X})^{\kappa} p_L(\omega)}$$
(3)

 λ は最適化される HMM パラメータの組、X= $\{x_t|t=1,\cdots,T\}$ は T フレームの特徴量ベクトル 列である。 $P_{\lambda}(\omega, \mathbf{X})$ は、HMM 状態系列 s における、 音響モデルスコア p_{λ} (音響スケール κ) と言語モデル スコア p_L の積である。式(3)において、音響スコア は正解ラベル s_r およびsに関する総和で求められる。 S_{ω_r} と S_{ω} は各々、正解ラベル ω_r と仮説 ω を出力す る HMM 状態系列の組である。以下、単純化のため C、Qは1とし、インデックスqは省略する。

式 (1) の φ を λ_c に、 \mathcal{F} を $\mathcal{F}^{\mathrm{MMI}}$ に置き換えると、 補助システムを構築するための目的関数が得られる。

$$\mathcal{F}_{\lambda_c}^{c}(\omega_r, \omega_1) = \mathcal{F}_{\lambda_c}^{MMI}(\omega_r) + \alpha \ln \frac{P_{\lambda_c}(\omega_r, \mathbf{X})}{P_{\lambda_c}(\omega_1, \mathbf{X})}$$
(4)

2014年9月

これは MMI 識別学習の枠組み内にあるが、対数尤度 比の項が付加されている点が異なる。

-3 -

^{*}A discriminative training framework for speech recognition system combination, by TACHIOKA, Yuuki (Mitsubishi Electric Corp.), WATANABE, Shinji, LE ROUX, Jonathan, HERSHEY, John R.(MERL)

ブーステッド MMI(bMMI) [3] では、MMI の目的 関数に、正解率の低い仮説に対応する特徴量を増幅 する効果のある係数を導入する。

$$\mathcal{F}_{\lambda}^{\text{bMMI}}(\omega_r) = \ln \frac{\sum_{s_r \in \mathcal{S}_{\omega_r}} p_{\lambda} (s_r, \boldsymbol{X})^{\kappa} p_L(\omega_r)}{\sum_{\omega} \sum_{s \in \mathcal{S}_{\omega}} p_{\lambda} (s, \boldsymbol{X})^{\kappa} p_L(\omega) e^{-bA(s, s_r)}}$$
(5)

 $A(s,s_r)$ は、HMM 状態系列 s の正解系列 s_r に対する状態/音素/単語正解率で、フレームごとに計算される。式 (4) の単純な拡張により、 $\mathcal{F}^{\mathrm{MMI}}$ を $\mathcal{F}^{\mathrm{bMMI}}$ で置き換え、式 (5) と同様に対数尤度比の項に (逆符号の) 増幅係数を加えると、以下の目的関数を得る 1 。

$$\mathcal{F}_{\lambda_{c}}^{c}(\omega_{r}, \omega_{1}) = \mathcal{F}_{\lambda_{c}}^{\text{bMMI}}(\omega_{r})$$

$$+ \alpha \ln \frac{\sum_{s_{r} \in \mathcal{S}_{\omega_{r}}} p_{\lambda} (s_{r}, \boldsymbol{X})^{\kappa} p_{L}(\omega_{r})}{\sum_{s_{1} \in \mathcal{S}_{\omega_{1}}} p_{\lambda} (s_{1}, \boldsymbol{X})^{\kappa} p_{L}(\omega_{1}) e^{b_{1} A(s_{1}, s_{r})}}$$
(6)

 s_1 は元のシステムの 1 位の仮説 ω_1 に対応する HMM の状態系列である。逆符号の増幅係数 b_1 の役割については [2] の議論を参照されたい。この手順は音響モデルの識別学習、識別的特徴量変換のいずれにおいても共通に用いることができる。

DNN-HMM において、MMI 基準 (2) に基づく系列 的な識別学習法が提案されている [4]。ここでは、この手法に提案法を適用することを考える 2 。DNN は HMM の状態 j の出力確率を出力する。

$$p_{\theta}\left(\boldsymbol{x}_{t}|j\right) = \frac{p_{\theta}\left(j|\boldsymbol{x}_{t}\right)}{p_{0}\left(j\right)} \tag{7}$$

 $p_0(j)$ は学習データから計算される事前確率である。 HMM 状態毎に、モデル θ は soft-max の活性化関数 p_{θ} を含む。

$$p_{\theta}(j|\mathbf{x}_t) = \frac{\exp a(j|\mathbf{x}_t)}{\sum_{j'} \exp a(j'|\mathbf{x}_t)}$$
(8)

a は出力層の活性であり、MMI 基準に基づき、識別的に学習される。MMI の目的関数は式 (6) の λ を θ で置き換えたものとなる。活性 a の更新式は、目的関数をそれで微分して得られる。

$$\frac{\partial \mathcal{F}^{\text{bMMI}}}{\partial a(j)} = \sum_{j'} \frac{\partial \mathcal{F}^{\text{bMMI}}}{\partial \log p_{\theta}(\mathbf{x}_{t}|j')} \frac{\partial \log p_{\theta}(\mathbf{x}_{t}|j')}{\partial a(j)}
= \kappa(\gamma_{i,t}^{num} - \gamma_{i,t}^{den}) = \kappa \Delta_{j,t}$$
(9)

提案法においては、式 (9) のパラメータを、以下のように修正すればよい。 $(\gamma_{jm,t}^{num}$ は不変)

$$\Delta'_{j,t} = (1+\alpha) \left(\gamma_{j,t}^{num} - \gamma_{j,t}^{den'} \right)$$

$$\underline{\gamma_{j,t}^{den'}} = \frac{\gamma_{j,t}^{den} + \alpha \gamma_{j,t}^{1}}{1+\alpha}$$
(10)

²GMM への応用は文献 [2] を参照されたい。

Algorithm 1 Construct complementary system model for DNN

Require: Initial model θ , base system models θ_q , numerator (ω_r aligned) lattice \mathcal{A} , and denominator lattice \mathcal{L} of Eq. (2) or (5)

for i = 1 to i_{eb} do

Rescore \mathcal{A} and \mathcal{L} with θ

 $\gamma_{j,t}^{num}$ and $\gamma_{j,t}^{den}$ \Leftarrow posteriors are gathered on \mathcal{A} and \mathcal{L} , respectively

$$\gamma_{j,t} \leftarrow -\gamma_{j,t}^{den} + (1+\alpha)\gamma_{j,t}^{num}$$

for q = 1 to Q do

Rescore \mathcal{L} with θ_q

 $\mathcal{L}_1 \Leftarrow \text{best path of } \mathcal{L}$

Rescore \mathcal{L}_1 with θ

 $\gamma_{j,t}^1 \Leftarrow \text{posteriors are gathered on } \mathcal{L}_1$

$$\gamma_{j,t} \Leftarrow -\frac{\alpha}{Q}\gamma_{j,t}^1 + \gamma_{j,t}$$

end for

 $\gamma_{j,t}^{num}, \gamma_{j,t}^{den} \Leftarrow \text{positive and negative parts of } \gamma_{j,t}$ $\theta \Leftarrow \text{Update } a \text{ by EBW or GD (Eq. (9))}$

end for

Ensure: Complementary system model $(\theta_c \leftarrow \theta)$

すべての DNN のパラメータの勾配は、式 (9) より導かれ、後ろ向き伝搬により求められる。Algorithm 1に、DNN の補助システムを構築する手順を示す。

4 識別的特徴量変換

音響モデルに加え、識別的基準に基づく特徴量変換が提案されている [3]。この方法では、高次元 (L次元) の非線形な特徴量を低次元 (K次元) の特徴量に写像する行列 M を推定する。

$$y_t = x_t + Mh_t \tag{11}$$

 h_t は非線形特徴量、 y_t は変換された特徴量である。行列 M は、 $K \times L$ 次元であり、MMI 基準により学習される。この方法は特徴量空間 MMI (f-MMI) あるいはその拡張のブーステッド f-MMI (f-MMI) と呼ばれる。式 (11) の y を式 (5) の x に代入する (X を Y で置き換える) ことで、f-MMI の目的関数 \mathcal{F}^{f-MMI} が得られる。(Y は特徴量ベクトル $\{y_t|t=1,\cdots,T\}$ 。)目的関数を M で微分して、M を最適化する。N 個のガウス分布より、非線形特徴量 $h_t = [h_{t,1}; ...; h_{t,N}]$ は、

$$\boldsymbol{h}_{t,n} = p_{t,n} \left[\frac{x_{t,1} - \mu_{n,1}}{\sigma_{n,1}}, \cdots, \frac{x_{t,K} - \mu_{n,K}}{\sigma_{n,K}}, \beta \right]^{\top}$$
(12)

のように計算される。 $\mu_{n,k}$ と $\sigma_{n,k}$ は、k 番目の次元 の n 番目のガウス分布の平均と標準偏差である。 β は

 $^{^1}$ 同じ音素・単語系列を実現する 1 HMM の状態系列は複数あるので、式 1 の第 1 2 項はこれらの系列に関する和になり、増幅係数 1 が最適化に関係する。

Algorithm 2 Construct complementary system model for f-MMI

Require: Acoustic model λ , initial matrix M, base system matrix M_q , numerator (ω_r aligned) lattice \mathcal{A} , and denominator lattice \mathcal{L}

for
$$i = 1$$
 to i_{eb} do

Rescore \mathcal{A} and \mathcal{L} with λ using $\mathbf{y}_t (= \mathbf{x}_t + \mathbf{M}\mathbf{h}_t)$ $\gamma_{jm,t}^{num}$ and $\gamma_{jm,t}^{den} \Leftarrow \text{posteriors of } \mathcal{A}$ and \mathcal{L} , respectively

$$\gamma_{jm,t} \leftarrow -\gamma_{jm,t}^{den} + (1+\alpha)\gamma_{jm,t}^{num}$$

for q = 1 to Q do

Rescore \mathcal{L} with λ using $\boldsymbol{y}_t \ (= \boldsymbol{x}_t + \boldsymbol{M}_q \boldsymbol{h}_t)$

Rescore \mathcal{L}_1 with λ

$$\gamma_{im,t}^1 \Leftarrow \text{posterior of } \mathcal{L}_1$$

$$\gamma_{jm,t} \leftarrow -\frac{\alpha}{Q} \gamma_{jm,t}^1 + \gamma_{jm,t}$$

end for

 $\gamma_{jm,t}^{num}, \gamma_{jm,t}^{den}$ \Leftarrow positive and negative parts of

 $M \Leftarrow \text{Update elements in } M \text{ by calculating the indirect differential}$

end for

Ensure: Complementary system matrix $(M_c \leftarrow M)$

スケーリング係数である。 $p_{t,n}$ はフレームごとに計算されるガウス分布の事後確率で、上位 N_1 個の事後確率のみを用いる。この仮定により、 h_t がスパースになり、計算量を削減することができる。

補助システムの目的関数は、式(1)より導出される。 その際、 φ を M_c で、 \mathcal{F} を $\mathcal{F}^{\text{f-MMI}}$ で置き換える。

$$\mathcal{F}_{\boldsymbol{M}_{c}}^{c}(\omega_{r}, \omega_{1}) = \mathcal{F}_{\boldsymbol{M}_{c}}^{\text{f-bMMI}}(\omega_{r})$$

$$+ \alpha \ln \frac{\sum_{s_{r} \in \mathcal{S}_{\omega_{r}}} p_{\boldsymbol{M}_{c}} (s_{r}, \boldsymbol{Y})^{\kappa} p_{L}(\omega_{r})}{\sum_{s_{1} \in \mathcal{S}_{\omega_{1}}} p_{\boldsymbol{M}_{c}} (s_{1}, \boldsymbol{Y})^{\kappa} p_{L}(\omega_{1}) e^{-b_{1} A(s_{1}, s_{r})}}$$
(13)

提案法は一般化された目的関数から始めて、識別的 特徴量変換にも適用できる。Algorithm 2 は最急降下 法を用いた補助システムのモデルの更新手順である。

5 音声認識実験

5.1 実験条件

提案法の検証のために、2 つのコーパス (第 2 回 CHiME チャレンジ (トラック 2) と日本語話し言葉コーパス (CSJ)) を用いた。前者で、提案法の音響モデル (DNN)、識別的特徴量変換への有効性を示し、後者で、提案法が異なるタスクにおいても有効に働くことを示す。前者は、残響・非定常高騒音環境における中

程度語彙 (5,000 単語) のタスク (Wall Street Journal 0) である [5]。 Kaldi ツールキット [6] を使った。学習 セットは 83 話者の 7,138 発話、開発セット (si_dt_05) は 10 話者の 409 発話、評価セット (si_et_05) は 12 話者の 330 発話からなる。音響モデルは学習セットで学習し、音響スケール κ は開発セット (si_dt_05) で調整した。騒音は他の話者の妨害、家庭内の騒音、音楽といった非定常性のもので、SNR は $\{-6,-3,0,3,6,9\}$ dBの 6 段階である。事前分布に基づくバイナリマスク [7] による騒音抑圧後のデータを使った。

音響特徴量は、0-12 次 MFCC + Δ + $\Delta\Delta$ で、これに、特徴量変換手法 (線形判別分析 (LDA)、最尤線形変換 (MLLT)) と話者適応手法 (話者適応学習 (SAT)、特徴量空間最尤線形回帰 (fMLLR)) を使った。

コンテクスト依存 HMM の状態数は 2,500 で、ガウス分布の総数は 15,000 である。DNN の学習には、Povey による Kaldi の実装を用いた。DNN は隠れ層 3 層からなり、100 万のパラメータを持つ。学習率は 0.01 から始めて、最終的に 0.001 まで低減した。識別 的特徴量変換においては、400 のガウス分布を用い、オフセット特徴量にはそれぞれ 9 フレームコンテキスト拡張した 40 次元の特徴量を与えた。よって特徴量ベクトル h_t の次元は、 $400 \times 40 \times 9$ となる。事後 確率の上位 2 つに対応する特徴量だけを選択した。 β は 5 とした。提案法のパラメータ α と b_1 はそれぞれ 開発セットで調整し、0.75 と 0.3 に設定した。

CSJ は、講義形式の大語彙 (70,000 単語) 連続音声 認識のタスクである。テストセット 1 は 10 人の男性 話者による 10 から 15 分程度の講演である。HMM の 状態数は 3,500、ガウス分布の総数は 96,000 とした。提案法のパラメータは CHiME チャレンジと同じも のを用いた。複数システムの出力仮説を統合する際 には、信頼度による重み付きの ROVER を用いた。

5.2 第2回 CHiME チャレンジ (高騒音下音声認識)

f-bMMI と DNN の開発セットにおける有効性を検証した。GMM システムの場合は、文献 [2] に示してある。Table 1 (左列) は、MFCC 特徴量に特徴量変換 (LDA+MLLT) と話者適応 (SAT+fMLLR) の変換を施した特徴量に対して、f-bMMI を行った場合の WERを示している。上段、上中段、下中段、下段はそれぞれ、従来の単一システム (S1-S4)、従来法による複数システムの ROVER(R1,R2)、提案法による補助システム (P1,P2)、提案法を含む ROVER(RP1,RP2) である。f-bMMI は通常同時に音響モデルも識別学習することが多い。この場合、補助システムを 2つの方法により構築した。1つ目は、f-bMMI と bMMI、双方の目的関数を修正した場合 (式 (13) かつ式 (6)) である (f-bMMI $_c$ + bMMI $_c$)。2つ目は、f-bMMI に対して

Table 1 Average WER[%] for isolated speech (development set (si_ dt_05) and evaluation set (si_ et_05)) on discriminative feature transformation. (MFCC with LDA+MLLT + SAT+fMLLR) (upper: conventional Single systems (S), upper middle: \underline{R} OVER among conventional multiple systems (R), lower middle: single \underline{P} roposed complimentary systems (P), and lower: \underline{R} OVER including \underline{P} roposed complementary system (RP))

ID	bMMI	f-bMMI	f-bMMI _c	f-bMMI _c	WER	
			$+ \text{ bMMI}_{c}$	+bMMI	(dt)	(et)
S5	✓				35.86	29.46
S6		✓			33.19	27.00
R3	✓	✓			33.80	27.15
P3			✓		35.38	28.27
P4				✓	33.88	27.86
RP3		✓	✓		32.75	26.60
RP4		✓		✓	32.67	26.62

Table 2 Average WER[%] for isolated speech (si_dt_05 and si_et_05) on acoustic modeling (DNN). (MFCC with LDA+MLLT)

ID	CE	LMMI	$\mathrm{bMMI_{c}}$	WER		
Ш	CE	DIVITI	DIVITILE	(dt)	(et)	
S7	√			36.59		
S8		✓		32.40	26.91	
P5			√	33.09	27.97	
RP5		✓	√	31.38	26.48	

Table 3 WER[%] in terms of SNR[dB] for isolated speech (si_et_05) on f-bMMI (S6 \rightarrow RP3) and DNN (S8 \rightarrow RP5).

-	$-6\mathrm{dB}$	-3dB	0 dB	3dB	6dB	9 dB	Avg.
S6	44.14	35.42	28.56	21.46	17.41	14.98	27.00
S8	43.86	33.36	28.13	22.01	17.75	16.36	26.91
RP3	43.21	34.24	28.25	21.58	17.17	15.13	26.60
RP5	42.85	32.43	27.91	21.56	17.75	14.98 16.36 15.13 16.40	26.48

だけ、目的関数を修正した場合 (式 (13) かつ式 (5)) である $(f\text{-bMMI}_c + b\text{MMI})$ 。 bMMI と f-bMMI の組み合わせ (R3) は、f-bMMI だけの場合よりも性能が低かったが、提案法と組み合わせることにより (RP3) と RP4)認識率が向上した。「 $f\text{-bMMI}_c + b\text{MMI}_c$ 」の間には顕著な差は見られない。

Table 2 は、MFCC と PLP に LDA+MLLT の特徴量変換を施した場合 (話者適応なし)の DNN の WER である。識別学習により認識率は 4.19%向上し $(S7\rightarrow S8)$ 、提案法と組み合わせでさらに性能が向上した (RP5)。評価セットの場合にも、傾向は類似している。 Table 3 は、SNR 毎に WER を調査したものである。 S6 と RP3 (f-bMMI の場合)、 S8 と RP5 (DNN の場合)を比較すると、ほぼすべての場合で、提案法は WER を改善しており、特に SNR が低い場合に有効である (最大 1.2%)。よって、提案法はさま

Table 4 WER[%] (CSJ, test set 1) on acoustic modeling (GMM). (MFCC)

ID	ML	bMMI	$\mathrm{bMMI_{c}}$	WER
S1	√			21.00
S2		✓		18.64
R1	√	✓		18.69
P1			✓	18.81
RP1		✓	√	18.52
RP2	✓	✓	✓	18.28

ざまな環境において効果が安定していて頑健であり、 音響モデルや識別的特徴量変換といった幅広い系列 識別学習に有効であることが示された。

5.3 CSJ(大語彙連続音声認識)

2つ目のコーパスである CSJ を用いて性能評価を行った。Table 4 は、GMM システムのテストセット 1 における WER である。この場合にも、従来のROVER(R1) は単一システムの場合 (S2) よりも性能が低下しているが、提案法は 2 つあるいは 3 つのシステムを組み合わせることで、0.36%の改善が見られた。

6 まとめと今後の課題

システム統合のための一般的な識別学習の枠組み を提案し、補助システムを識別学習の枠組みに基づ き構築した。実験により、高騒音下および大語彙連続 音声認識タスクにおいて提案法の有効性が示された。 さらに音響モデルの識別学習と識別的特徴変換いず れにおいても効果が見られた。今後の課題としては、 他の識別学習の手法との組み合わせが考えられる。

参考文献

- J. Fiscus, "A post-processing system to yield reduced error word rates: Recognizer output voting error reduction (ROVER)," Proceedings of ASRU, pp.347–354 (1997).
- [2] 太刀岡勇気, 渡部晋治, J. Le Roux, J. Hershey, "システム 統合のための音響モデルの相互情報量最大化識別学習,"音講 論 (春), pp.35–38 (2014).
- [3] D. Povey, D. Kanevsky, B. Kingsbury, B. Ramabhadran, G. Saon, and K. Visweswariah, "Boosted MMI for model and feature-space discriminative training," Proceedings of ICASSP, pp.4057–4060 (2008).
- [4] K. Veselý, A. Ghoshal, L. Burget, and D. Povey, "Sequence-discriminative training of deep neural networks," Proceedings of INTERSPEECH (2013).
- [5] E. Vincent, J. Barker, S. Watanabe, J. Le Roux, F. Nesta, and M. Matassoni, "The second 'CHiME' speech separation and recognition challenge: Datasets, tasks and baselines," Proceedings of ICASSP, pp.126–130 (2013).
- [6] D. Povey, A. Ghoshal, G. Boulianne, L. Burget, O. Glembek, N. Goel, M. Hannemann, M. Petr, Y. Qian, P. Schwarz, J. Silovský, G. Stemmer, and K. Veselý, "The Kaldi speech recognition toolkit," Proceedings of ASRU, pp.1–4 (2011).
- [7] Y. Tachioka, S. Watanabe, J. Le Roux, and J. Hershey, "Discriminative methods for noise robust speech recognition: A CHiME challenge benchmark," Proceedings of the 2nd CHiME Workshop on Machine Listening in Multisource Environments, pp.19–24 (2013).