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Abstract—Principal component analysis (PCA) is often used to
visualize and cluster embedding vectors of deep-learning models;
however large noise can degrade the results of PCA when the
dimension of the embedding vectors is much larger than the data
size. These types of data are referred to as high-dimension, low-
sample-size (HDSS) data, where the number of data dimension
is much larger than the sample size, and they must be treated
differently than typical data, because the eigenvalues of a HDSS
data covariance matrix are impacted by large noise. Previous
studies on HDSS data proposed the noise reduction methodology
(NRM) and cross-data matrix methodology (CDM) to reduce
such effects. In this study, we apply NRM and CDM to visualize
the embedding vectors of an end-to-end speech synthesis system.
Experimental results show that the NRM can estimate reduced
eigenvalues by eliminating the large noise and that the CDM can
provide a more reasonable visualization, although the results are
dependent on the initial CDM clusters. In addition, we propose
a method for estimating the power exponent of a general spiked
model to assess whether the estimated eigenvalues are consistent.

Index Terms—noise reduction methodology, cross-data matrix
methodology, general spiked model, embedding vector

I. INTRODUCTION

Embedding vectors for deep-learning-based methods in-
clude important information which needs to be visualized to
understand a model’s behavior. Because embedding vectors
are high-dimensional and it is difficult to visualize their
characteristics, they are typically converted into two- or three-
dimensional vectors by principal component analysis (PCA)
[1]. For speech synthesis systems that can control speaker
and style, it is important to visualize embedding vectors and
capture the difference between embedding vectors in terms of
speakers or styles. For example, the dimension of embedding
vectors d is around 29 and the number of speakers or styles
n is around 22–24. In this case, d is much greater than the
sample size n. In the field of statistics, these types of data
(d ≫ n) are referred to as high-dimension, low-sample-size
(HDSS) data, which cannot be treated as typical data [2] for
PCA because the eigenvalues of sample covariance matrices
are impacted by large noise [3]–[5].

To reduce this effect and estimate consistent eigenvalues
of HDSS data, previous studies have proposed the noise
reduction methodology (NRM) [2] and the cross-data-matrix
methodology (CDM) [6]. In this paper, we compare PCA with
these two methodologies for visualizing embedding vectors of
speech synthesis systems. On the other hand, the papers [1],
[7] have shown that the PCA scores are consistent for HDSS

data under certain conditions, which means that for certain
types of HDSS data, large noise does not impact the results.
A general spiked model can model the eigenvalues of sample
covariance matrices of HDSS data, and whether or not the
eigenvalues are consistent can be known from a parameter of
the general spiked model [2]. For given data, we propose a
method to estimate this parameter to determine whether the
estimated eigenvalues are consistent.

II. HOW TO DEAL WITH HDSS DATA

A. Dual space

Data matrix X(∈ Rd×n) is composed of d-dimensional
vectors with n observations. To estimate the eigenvalues of
HDSS data, instead of a large-size sample covariance matrix

S = XX⊤ (∈ Rd×d), (1)

a small-size dual sample covariance matrix

SD = X⊤X (∈ Rn×n), (2)

is used, where ⊤ is a transpose. In this case, the first n-th
eigenvalues of S are equal to the eigenvalues of SD. In dual
space, if the contribution of the maximum eigenvalue of SD

converges to 0 at d → ∞, the eigenvalues are consistent. If
consistent, SD converges to the surface of a sphere and the
eigenvalues are determined. If not, SD converges to the axis
and the eigenvalues and eigenvectors are not fixed.

B. Assumption of mutual independence of Z

After the matrix

Z = Λ−1/2H⊤X, (3)

is calculated, if d row vectors of Z are mutually independent,
NRM in II-C is used; otherwise, CDM in II-D is used. Here,
Λ and H are the results of the eigenvalue decomposition,
which is applied to S̄ as S̄ = X̄X̄⊤ = HΛH⊤. Before the
eigenvalue decomposition, the centralization where the average
over the column is subtracted from the data matrix is applied
to X as

X̄ = X − 1

n

∑
ν

X[:, ν] (∈ Rd). (4)
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C. NRM [2]

If the assumption in II-B is satisfied, the noise is consistent
and converges to the surface of a sphere. The objective of
the NRM is to eliminate this noise. In the HDSS settings,
sample eigenvalues λ = [λ1, λ2, ...] are overly estimated due
to the effect of noise. The NRM reduces s(= 1, ..., n− 2)-th
eigenvalues, λs, as

λ̃s = λs −
tr (SD)−

∑s
s′=1 λs′

n− 1− s
. (5)

D. CDM [6]

The CDM is used to estimate consistent eigenvalues when
the assumption in II-B is not satisfied. The CDM divides a
column index set of the data matrix X , N = {1, ..., n}, into
disjoint two sets N1 and N2 (N = N1∪N2, N1∩N2 = ∅, and
|N1| − |N2| ∈ {0, 1}). This gives two distinct data matrices,
X1 = X[:, ν ∈ N1] and X2 = X[:, ν ∈ N2]. After the
centralization of X1 and X2, which subtracts the mean from
both matrices, cross-data matrices

S1
D =

X⊤
1 X2√

(|N1| − 1)(|N2| − 1)
,

S2
D = (S1

D)⊤,

(6)

are obtained. Because S1
D is a symmetric matrix, singu-

lar value decomposition of S1
D yields eigenvalues λ́s(s =

1, ..., |N2| − 1).

III. GENERAL SPIKED MODEL AND ITS PARAMETER
ESTIMATION METHOD

A general spiked model [2] can be applied to HDSS data in
which a few eigenvalues among the eigenvalues of a sample
covariance matrix are spiked, i.e., when a few eigenvalues are
much greater than the others [2], [5], [8]. For eigenvalues of
S, λs(s = 1, ..., d), a general spiked model assumes that the
first m eigenvalues decay exponentially.

λs =

{
csd

αs (s = 1, ...,m),

cs (s = m+ 1, ..., d),
(7)

where cs(> 0) and αs are unknown constants preserving the
order 1 > αs′ > αs′′ > 0 (s′ < s′′) and αs plays a key role
in judging whether sample eigenvalues are consistent or not.
For PCA, if this model can be applied, sample eigenvalues λ
are consistent when

γ ≥ 1− αs, (8)

where γ is logd n. For the NRM, if

γ ≥ 1− 2αs, (9)

is satisfied, the eigenvalues λ̃ are consistent. The consistent
region is larger than that of PCA. For the CDM, eigenvalues
λ́ are consistent when

αs >
1

2
∨ γ ≥ 1− αs, (10)

is satisfied.

We estimate a power exponent αs in Eq. (7) as follows.
Normalized data matrices

√
d/tr (Sn)X are used where the

sum of eigenvalues are d and tr is a trace. We take a subset
T ′ from a row index set T = {1, ..., d} of X , where T ′ ⊂ T
and |T ′| = d′ < |T | = d. In this case, the division of both
hand sides of Eq. (7) can remove the common constants cs,
giving

λ′
s

λs
=

(
d′

d

)αs

, (11)

where λ′
s is an eigenvalue of the sample covariance of

X [τ ∈ T ′, :]. Because d′ can be arbitrarily set, αs can be
estimated by the power approximation of multiple sampling
of T ′ to calculate λ′

s/λs.

IV. EXPERIMENTS

A. Experimental condition

We used Tacotron2 as the speech synthesis system,
which receives five characters for encoders, obtains 512(=
d)-dimensional embedding vectors, and estimates Mel-
spectrograms using an auto-regressive decoder [9]. Then the
Waveglow model [10] generates waveforms from the estimated
Mel-spectrogram. The sampling frequency was 22.5 kHz. To
control Tacotron2, we added speaker and style tags [11] before
the characters of the utterance. For training, four professional
narrators (two male and two female) read out scripted 2,456
utterances and ten narrators (five male and five female) read
out 600 utterances in four styles. For evaluation, we used 30
utterances for each style, which were different from training
data. Style tags were single alphabet characters corresponding
to each style (neutral (h), sad (k), joyful (t), or angry (z)).
Speaker tags consisted of four letters, where the initial charac-
ter indicated sex (female (f) and male (m)) and the other three
characters were the narrator’s name. Speech was synthesized
for 20 speakers. In addition to the above 14 training speakers,
speech by six additional speakers (three male and three female)
were synthesized by using randomly generated speaker tags.

Embedded vectors were converted to two-dimensional vec-
tors by PCA, NRM, and CDM. The figures show the eigen-
values and their cumulative ones. Publicly available codes1

were used for the NRM and CDM. We prepared three N
divisions for the CDM. In addition, for the first six eigenvalues
(s = 1, ..., 6), the proposed method presented in III was used
to estimate αs by sampling T ′ 500 times.

B. Results and discussion

1) Style: Fig. 1 shows the PCA results of embedding
vectors of four styles and two female speakers (ftak and fhar)
(n = 4×2), which indicate that embedding space was divided
by speakers and that both orders of the styles {h,t,z,k} were
the same. Fig. 2 shows the results of the NRM. The first
eigenvalue was reduced but the trends were similar to that of
PCA. Fig. 3 shows the results of the CDM, which contained
three N divisions. The elements in N1 were indicated by △.
In the top figure, the N division by speaker can cluster the

1http://www.math.tsukuba.ac.jp/∼aoshima-lab/jp/Rcode.html

444



-4 -2 0 2 4

1st Principal Component Score

-4

-3

-2

-1

0

1

2

3

2
n

d
 P

ri
n

ci
p

al
 C

o
m

p
o

n
en

t 
S

co
re

fhar
hfhar
t

fhar
k

fhar
z

ftak
h

ftak
t

ftak
k

ftak
z

0

20

40

60

80

100

V
ar

ia
n

ce
 E

x
p

la
in

ed
 (

%
)

1 2 3 4 5 6 7 8

Principal Component

0

1

2

3

4

5

6

E
ig

en
v

al
u

e

Fig. 1. Embedding vectors estimated by PCA in terms of style.
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Fig. 2. Embedding vectors estimated by NRM in terms of style.
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Fig. 3. Embedding vectors estimated by CDM in terms of style when three
N divisions were used.

embedding vectors of styles. However, in the middle figure
where one element is changed between N1 and N2 (‘fharh’
↔‘ftakh’), the ‘h’ cluster disappeared. This indicates that the
results of the CDM are dependent on the initial division of
N . In the bottom figure, N1 included the style ‘t’ twice and
did not include style ‘z’. Clusters of ‘t’ and ‘z’ were mixed,
which indicates that the division which included the elements
with different properties degraded the results of the CDM.
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Fig. 4. Relation between the ratio of λ and that of the dimension.

1 2 3 4 5 6

s

-20

0

20

40

60

raw

mean

median

1 2 3 4 5 6

s

0.5

1

1.5

Fig. 5. Estimated αs. Top: point estimation results; bottom: power approxi-
mation results.

To estimate the power exponent αs in Eq. (7), we first plot
y = λ′/λ and x = d′/d as shown in Fig. 4. As the figure
shows, the eigenvalues increased with data dimension. The red
lines are the power approximation (y = xαs ) for each s. The
top figure in Fig. 5 shows that the mean and median values
of αs from a point estimation of αs = log(y)/ log(x) have
outliers but converged. The bottom figure shows αs estimated
by power approximation. Except for s = 2, αs was greater
than 0.8. In Eq. (8), if γ ≥ 0.2, sample eigenvalues are
consistent. In this case, γ is 3/9 ≃ 0.33, which satisfies the
condition that the eigenvalues are consistent.

2) Speaker: The PCA results of embedding vectors from
changing the speaker tags and keeping style tag ‘h’ are shown
in Fig. 6. In addition to the 14 training speakers (seven male
and seven female) plotted with ‘+’, six additional speakers
(three male and three female) are plotted with ‘x’ (n = 20).
The results show that the sign of the first principal component
scores clearly correspond to the male and female speakers,
where the first character indicates sex. The results of the NRM
exhibit similar trends as shown in Fig. 7. The results of the
CDM are shown in Fig. 8, where the elements of N1 are
indicated by △ in the case of ‘+’ and ▽ in the case of ‘x’. In
the top figure, where N1 only includes female speakers, the
sign did not distinguish sex. In contrast, the random divisions
shown in the middle and bottom figures made it possible to
distinguish sex by the sign of the first principal component
scores, demonstrating that random divisions could distinguish
speakers more precisely than sex-dependent division.

We plot y = λ′/λ and x = d′/d in Fig. 9. The estimation
result of the power exponent αs in Eq. (7) is shown in Fig. 10.
In this case, αs > 0.6 and parameter γ ≃ 0.48, so the sample
eigenvalues are consistent.

V. CONCLUSION

Analyzing the embedding vectors of speech synthesis sys-
tem poses a challenge due to the impact of large noise on
HDSS data. To address this, we applied the NRM and CDM
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Fig. 6. Embedding vectors estimated by PCA in terms of speaker. ‘+’:
speakers in the training set; ‘x’: speakers who do not exist in the training
set (such as fwiq).

-3 -2 -1 0 1 2 3

1st Principal Component Score

-3

-2

-1

0

1

2

3

2
n

d
 P

ri
n

ci
p

al
 C

o
m

p
o

n
en

t 
S

co
re

miwa

mtou

mkag

mmae

msai

mtacmtsu

fhar

ftak

fito

fmin

fnak

fser

fyam

mcaa

mgdu

muxn

fwiq

fdme

fgeo

0

20

40

60

80

100

V
ar

ia
n

ce
 E

x
p

la
in

ed
 (

%
)

0 5 10 15

Principal Component

0

0.5

1

1.5

2

2.5

3

3.5

4

E
ig

en
v

al
u

e

Fig. 7. Embedding vectors estimated by NRM in terms of speaker.
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Fig. 8. Embedding vectors estimated by CDM in terms of speaker.

and proposed a methodology to estimate the power exponent of
a general spiked model, which can determine whether the es-
timated eigenvalues are consistent. Experimental results show
that the NRM reduced the eigenvalues of PCA but the results
of the NRM and PCA were similar. Meanwhile , the CDM
yielded more reasonable results but they were dependent on
the division of initial sets. The proposed method can estimate
the power exponent. In future work, we aim to improve the
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Fig. 9. Relation between the ratio of λ and that of the dimension.
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settings of the CDM for more accurate representations of
embedding vectors.
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