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Abstract—To make independent vector analysis (IVA) robust
for whitening, sparse IVA clips spectrum in high frequency bands,
because whitening generates artificial noise in high frequency
bands. In this paper, to avoid clipping of source spectrum
by sparse IVA, we propose an application of Mel filter to
the observed spectrum before clipping in order to emphasize
spectrum in low frequency bands, because source spectrum in
low frequency bands is often more important and sparse than
that in high frequency bands. The effectiveness of the proposed
method is confirmed by sound source separation experiments.

Index Terms—Proximal splitting algorithm, Sparse IVA, Mel
filter, Whitening

I. INTRODUCTION

Blind source separation (BSS) is a method for extracting
source signals from observed mixed signals without prior
information such as microphone and source location. One of
the most effective BSS methods is independent component
analysis [1] and its extensions, and IVA [2]. Before BSS,
whitening is widely used to improve its performance. How-
ever, whitening adds artificial noise to observed spectrum,
which distorts the sparseness of source spectrum. To recover
this sparseness of source signals, a sparse IVA clips spectrum
based on the measurement of sparsity [3], [4].

When we deal with sources whose power is biased to a low-
frequency band such as speech or music, the optimal threshold
of clipping is different for lower and higher frequency bands
but the conventional sparse IVA uniformly clips spectrum in
the entire frequency bands. To set optimal threshold for each
frequency bin, we propose to clip spectrum on the Mel scale in
order to maintain spectrum in the low frequency bands, which
are dominated by sources, while suppressing spectrum in the
high frequency bands, which are dominated by additional
noise. .

II. BSS BASED ON PROXIMAL SPLITTING ALGORITHM

A. Objective function

An observed spectrum xij = (xij1, xij2, . . . , xijM )⊤ is
obtained by the short-time Fourier transform of the observed
signals from each microphone channel m = 1, . . . ,M , where
i = 1, . . . , I represents a frequency bin, j = 1, . . . , J
represents a time frame, and ⊤ denotes the transpose. A
source spectrum is sij = (sij1, sij2, . . . , sijN )⊤, where n =
1, . . . , N is the source ID. Source spectrum can be related to
the observed spectrum as xij = Aisij , where Ai ∈ CM×N is
a mixing matrix. Under the determined condition (M = N ), its
inverse, A−1

i , can be used for a demixing matrix Wi ∈ CN×M .
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Fig. 1. BSS method based on a primal-dual (proximal splitting) algorithm

Using this demixing matrix, the separated spectrum can be
obtained by yij = Wixij where yij = (yij1, yij2, . . . , yijN )⊤

represents a separated signal. Under the assumption of source
independence, the above demixing matrix can be estimated if
the probability distribution of the source follows certain sta-
tistical distributions. The separated signals may be estimated
by solving the following minimization problem.

Minimize
{Wi}I

i=1

I∑
i=1

P (Wixij)−
I∑

i=1

log |det (Wi)| . (1)

The first term represents a real-valued penalty function that
corresponds to the deviation from the assumed source model
and the second term is introduced in order to normalize the
scale of a demixing matrix.

B. Sparse IVA [4]
Whitening distorts a sparse structure of source spectrum.

To recover this, a sparse IVA based on a proximal split-
ting algorithm has been proposed [3], [4]. Fig. 1 shows
the flow of the BSS method based on a proximal splitting
algorithm. The mask M [z] in Fig. 1 is a proximity operator
proxλ1∥·∥2,1+λ2∥·∥1

[z]. In addition, two weights Θη and Ξκ [·]
are introduced to calculate the sparsity of separated signals and
reduce the bias. The mask of the sparse IVA is as follows:

(M [z])
x,η,λ1,2,κ
ijn = ζz,λ2,κ

ijn

×Ξκ

[(
1−

(
λ1/

(
ΣI

i=1(Θη [x])i

∣∣∣ζz,λ2,κ
ijn zijn

∣∣∣2)1/2
))

+

]
.(2)

ζz,λ2,κ
ijn = Ξκ[(1− λ2/|zijn|)+] corresponds to the proximity

operator of L1 norm as the firm threshold, where λ1, λ2

are nonnegative threshold valuesand (·)+ is max(0, ·). The
argument of Ξκ[·] corresponds to the proximity operator of
L2,1 norm, κ ≥ 1 is a magnification factor for a debiasing
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TABLE I
MUSIC SIGNALS FOR EXPERIMENTS

Signal Source 1 Source 2
Mixture A Female(−50◦) Female(45◦)
Mixture B Female(−10◦) Female(15◦)
bearlin1 Piano(0◦) Vocal(−80◦)
bearlin2 Vocal(−80◦) Ambient(60◦)
bearlin3 Piano(0◦) Ambient(60◦)

ultimate1 Guitar(0◦) Synth(−80◦)
ultimate2 Synth(−80◦) Drum(60◦)
ultimate3 Guitar(0◦) Drum(60◦)

operator Ξκ [·] = (κzijn/maxijn {zijn})−, where (·)− is
min(1, ·). Θη in Eq. (3) is a frequency-wise weight where
η ≧ 0 is the clipping parameter. When the sparsity in a
frequency bin i is greater, the weight (Θη)i is larger. This
weight has a noise suppression effect by clipping.

(Θη [x])i = (Υη

[
(ΣM

m=1Σ
J
j=1|xijm|2)

1
2/ΣM

m=1Σ
J
j=1|xijm|

]
)i,

(3)where Υη[·] denotes the clipped L1 normalization with a
threshold η as Υη [ξ] = ξη/

(
∥ξη∥1 /I

)
, ξη = (ξ − η)+,

where ξ is the argument of Υη and ξη is the clipped ξ. This
subtraction masks the frequency band where noise is dominant
and target signals do not exist.

III. PROPOSED METHOD

A. Overview
Speech tends to have high power density in low-frequency

bands. Therefore, we aim to keep the peaks of speech spectrum
in the low frequency bands and suppress noise added by
whitening in the high frequency bands. For that purpose, we
introduce a clipping for Mel spectrogram.

B. Sparse IVA on the Mel scale
We applied Mel filter to a spectrum, as follows:

Mel[x]cjm =
I∑

i=1

Hc(i) ∗ |xijm|. (4)

where Hc(i) is the c-th channel of the Mel filter. Then, instead
of an observed signal x for the sparsity of the argument of
Υη[·] in Eq. (3), we use Mel[x],

ξMel
c = (ΣM

m=1Σ
J
j=1Mel[x]2cjm)

1
2/ΣM

m=1Σ
J
j=1Mel[x]cjm. (5)

Then, an weight Θη [x]], which is used a sparse IVA in Eq. (3),
is calculated with ξ̃Mel

i as follows:

(Θη [Mel[x]])i = Υη

[
C∑

c=1

Hc(i)
−1 ∗ ξMel

c

]
. (6)

To match the number of dimensions between frequency-bins I
and channels of the Mel scale C, ξMel

c is converted by using
inverse Mel filter again.

IV. EXPERIMENTS

A. Experimental conditions
In this section, we confirm the performance improvement of

a sparse IVA that clips spectrum on the Mel scale through BSS
experiments for speech signals and music signals composed of
two sound sources with an observation of two microphones.
We prepared Mixture A, and Mixture B composed of two
female sources of dev1 in the UND task from the SiSEC
database [5]. The music signals were created by dry instru-
mental sources: the Bearlin-Roads and Ultimate-Nz-Tour from

TABLE II
EXPERIMENTAL RESULT EVALUATED IN TERMS OF SDRS [dB]

Conventional Avg(Conv) Proposed Aveg(Prop)
MixtureA 10.8 8.7 11.0 9.3MixtureB 6.7 7.7
bearlin1 7.4

6.3
7.2

6.3bearlin2 8.2 8.0
bearlin3 3.4 3.7

ultimate1 4.5
5.3

7.1
6.9ultimate2 6.2 6.5

ultimate3 5.1 7.1

the SiSEC database convolved with impulse responses (E2A)
of the RWCP [7] database. The sampling rate was 16kHz,
the frame size was 2048, and the shift size was 1024. The
combination of sources and source direction are shown in
Table I. We set an identity matrix to the initial demixing
matrices Wi and zero vector to dual-value d. The experimental
parameters were µ1 = µ2 = 1, λ1 = 2, λ2 = 0.01, κ = 1.1,
α = 0.5. We set the clipping parameter with parameter δ = 0.5
in Eq. (6) as follows: η = ξ̂k, k = ⌊δI⌋ ,where ξ̂k is ξi sorted
in the ascending order and ⌊·⌋ is a flooring function. The
performance was evaluated in terms of SDR [dB] [6].

B. Results and discussion
Table II shows the SDR, which is the average of two

separated signals and the total average of speech and musical
pieces. The proposed method improved the average SDR for
speech signals by 0.6dB. Regarding music signals, although
the average SDR of the proposed method to Bearlin-Roads was
the same to that of the conventional method, the average SDR
to Ultimate-Nz-Tour was improved by 1.6dB. In particular,
for Ultimate1 and Ultimate 3, SDRs were improved by 2dB
because the source composed of guitar was characteristically
biased to low-frequency bands.

V. CONCLUSION

In this paper, to improve the BSS performance of sparse
IVA, we proposed a sparse IVA that uses clipping for Mel
spectrogram. This proposed method can suppress the noise
added by whitening mainly in the higher frequency bands and
maintain the source spectrum in the lower frequency bands.
Experiments indicated that the proposed method was effective
both for speech signals and for music signals whose power is
biased to low frequency bands.
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