
Permutation Alignment Based on MUSIC Spectrum
Discrepancy for Blind Source Separation

Yuuki Tachioka
Denso IT Laboratory

Tokyo, Japan
ytachioka@d-itlab.co.jp

Abstract—Conventional time-frequency-domain blind source
separation (BSS) requires permutation alignment of the sound
sources. Permutation alignment methods can be classified into
two types: those that use the direction of arrival (DOA) con-
straints and those that model the sound source characteristics
instead of DOA constraints. Multi-channel non-negative matrix
factorization (MNMF), which is based on the second type, is one
of the most effective BSS methods. However, our experiments
revealed that its permutation alignment sometimes fails due to the
lack of a DOA constraint. We present a permutation alignment
method based on the DOAs directly obtained from a spatial cor-
relation matrix by using multiple signal classification (MUSIC)
and that solves the permutation problems by minimizing the
discrepancy of the MUSIC spectra, which belong to the same
source, in the middle of the BSS algorithm. Our proposed method
boosts the second type with a help of the DOA constraint and
can be applied in a blind manner to both the mixing system
approach, e.g., MNMF, and the demixing system approach, e.g.,
independent low-rank matrix analysis. Experiments showed that
the proposed method is effective for both approaches.

Index Terms—blind source separation, permutation alignment,
direction of arrival estimation, multiple signal classification

I. INTRODUCTION

Sound source separation extracts target sources from mixed
signals. In particular, the blind source separation (BSS) ap-
proach does not need prior knowledge about the positions of
sources or microphones and it is especially convenient and is
robust to measurement errors. It is more effective to conduct
time-frequency-domain BSS than time-domain BSS because
the convolutive mixture in the time domain can be dealt with
as an instantaneous mixture in the time-frequency domain [1].

The most widely used time-frequency-domain BSS has been
independent component analysis [2] but it requires permu-
tation alignment of sound sources after separation because
the ambiguity of source index causes source permutations
among frequency bins. The permutation alignment methods
are classified into two types: ones using the direction of arrival
(DOA) and ones that model the sound source characteristics.
An example of the first type is DOA clustering [3], [4], which
makes it easy to understand the reasons for separation failures.

There are numerous examples of the second type. Some
place certain assumptions on the properties of the sources, for
instance, on the correlation of the amplitude envelopes among
neighboring frequency bins [1]. Others model the spectrum
envelopes [5], [6]. In particular, a method called independent

vector analysis (IVA) [7]–[9] assumes that the target sources
across different frequency bins activate simultaneously.

Advanced forms of IVA, multi-channel non-negative matrix
factorization (MNMF) [10] and its rank-1 relaxation, inde-
pendent low-rank matrix analysis (ILRMA) [11], have been
developed. MNMF models the spectrum envelope by using
low-rank bases and activations without any explicit DOA
constraints. It can perform accurate separation, but sometimes
fails. We believe that the permutation alignments based on
DOAs are necessary for both MNMF and ILRMA because
BSS performance depends heavily on the estimation accuracy
of the spatial correlation matrices [12], [13]. The experiments
described in Section IV reveal that one of the causes of sepa-
ration failure in MNMF is insufficient permutation alignment.

This paper proposes a permutation alignment method based
on DOA estimated by multiple signal classification (MU-
SIC) [14]. Conventional DOA clustering [3], [4] relies time-
frequency-bin-wise DOA for solving the permutation prob-
lems, but bin-wise DOA is poor at estimating accurate DOAs
[15]. In fact, in the field of DOA estimation, instead of bin-
wise DOA, generalized cross correlation with phase transform
[16] or MUSIC-based approaches are the most widely used.
Mitianoudis [17] proposed a permutation alignment method
by applying the MUSIC algorithm to the demixed signals. In
contrast, our method directly applies the MUSIC algorithm
to the estimated spatial correlation matrix instead of the
demixed signals. To detect the source permutations, we use
different metrics to evaluate the discrepancies between the
MUSIC spectra. Minimizing the discrepancy leads to the
permutation alignments. Our algorithm does not require any
prior knowledge about the source or microphone setups and
can be applied in a blind manner to both the mixing and
demixing system approach. Furthermore, it can be used in
underdetermined situations where the number of microphones
is less than that of the sound sources due to the sparsity in the
time-frequency domain. It aligns the permutation not at the
end of the BSS algorithm, as is done in [3], [4], [17], [18],
but in the middle of the BSS algorithm, as in permutation-
free clustering [15]. The permutations can be aligned along
with the BSS algorithms. It improves the performance of BSS
with a help of DOA constraints, which is a combination of the
above-mentioned two types of permutation alignment methods.

The remainder of this paper is organized as follows. Section
II describes the BSS methods, MNMF and ILRMA. Section
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III describes the permutation alignment algorithm based on
metrics for evaluating MUSIC spectrum discrepancies. BSS
experiments using four different musical pieces examining
the effectiveness of the algorithm are described. Section IV
compares the BSS performance of MNMF and ILRMA with
and without the proposed permutation alignment.

II. BSS METHODS

A. MNMF (mixing system approach)

An observation vector at frequency bin i (1 ≤ i ≤
I) and time frame j (1 ≤ j ≤ J), xi,j , is expressed
as [x1, . . . , xm, . . . , xM ]⊤i,j , where ⊤ denotes the transpose
and xm is a complex short-time Fourier transform spectrum
observed at the m(1 ≤ m ≤ M)-th microphone. Thus,
the i, j element of the tensor containing signals’ statistics
X ∈ (CM×M )I×J is represented as Xi,j = xi,jx

H
i,j where H

is the Hermitian transpose. X is a hierarchical matrix whose
elements Xi,j ∈ CM×M are semi-positive-definite Hermitian
matrices. X can be reconstructed as X̂ by factorized four
matrices:

X ∼= X̂ = [(HZ) ◦ T ]V , (1)

where ◦ is the Hadamard product. H ∈ (CM×M )I×L is a
spatial correlation matrix that indicates the spatial correlation
of L sources. The bases matrix T ∈ RI×K is composed of
K bases and V ∈ RK×J is the activation of each basis. Z ∈
RL×K is a matrix relating the spatial correlation to each basis.
The right-hand side of Eq. (1) is X̂i,j =

∑
k,l Hi,lzl,kti,kvk,j .

The four matrices above are updated to minimize the multi-
channel Itakura-Saito divergence between X and X̂:

argmin
H,Z,T ,V

∑
i,j

[
tr(Xi,jX̂

−1
i,j )− log detXi,jX̂

−1
i,j −M

]
, (2)

where tr(·) is the trace of a matrix.

B. ILRMA (demixing system approach)

ILRMA estimates a demixing matrix directly instead of a
spatial correlation matrix. Assuming a rank-1 approximation
of the mixed system, the observation xi,j and source image
si,j ∈ CL are related through the demixing matrix Wi ∈
CL×M as follows: si,j = Wixi,j = [wi,1, ...,wi,L]

⊤xi,j ,
where wi,l(∈ CM ) is the l-th row vector of Wi. The mixing
matrix Ai ∈ CM×L is the inverse of the demixing matrix
W−1

i (in the case of M ̸= L, the Moore-Penrose pseudo
inverse). Here, xi,j = Aisi,j = [ai,1, ...,ai,L]si,j (ai,l ∈
CM ) holds for mixing matrices. In a rank-1 system, the spatial
correlation matrix for the l-th source can be represented by the
correlation of the l-th column vector of Ai: Hi,l = ai,la

H
i,l.

III. PERMUTATION ALIGNMENT BY USING MUSIC
SPECTRA

A. MUSIC spectrum

The MUSIC spectrum of the l-th source at the i-th frequency
bin can be obtained from the spatial correlation matrix, Hi,l ∈
CM×M by performing an eigenvalue decomposition:

Hi,l = Bi,lGi,lB
−1
i,l =

[
Bs

i,lB
n
i,l

]
Gi,l

[
Bs

i,lB
n
i,l

]−1
. (3)

Here, Gi,l ∈ RM×M is a diagonal matrix whose elements are
real-valued eigenvalues (sorted in descending order) because
Hi,l is an Hermitian matrix. Bi,l ∈ CM×M is composed
of M -dimensional column eigenvectors, which are orthog-
onal to each other. Bi,l is composed of two sub-matrices
Bs

i,l ∈ CM×1 and Bn
i,l ∈ CM×(M−1), which span the

signal and noise subspaces, respectively. Eigenvectors that
correspond to eigenvalues other than the maximum eigenvalue
span noise subspaces because Hi,l corresponds to the single
l-th separated source. We assume that, when H is properly
obtained, the target source has the largest energy among
multiple sources. In the first iterations of BSS algorithm,
H cannot be properly obtained, thus we start permutation
alignments after some iterations.

The DOA range is discretized in S steps. Under the plane
wave assumption for a microphone array with a microphone
spacing δ1, the steering vector aP

i (θs) = [aP1 , ..., a
P
m, ..., aPM ]⊤

corresponding to each direction θs(s ∈ {1, ..., S}) is

aPm = exp

[
ȷ

(
m− M + 1

2

)
2πδ

c
(i− 1)

fs
I

sin θs

]
, (4)

where ȷ is the imaginary unit, fs is a sampling frequency [Hz],
and c is a sound velocity. Here, θs is a candidate of the source
directions, which we arbitrary assume.

The MUSIC spectrum with a weight of the maximum
eigenvalue Gi,l(1, 1) is expressed as

Si,l(θs) =

√
Gi,l(1, 1)

(aP
i (θs))

HBn
i,l(B

n
i,l)

HaP
i (θs)

. (5)

For MNMF, which can obtain the power spectrum of each
source, the power-normalized MUSIC spectrum, which is the
MUSIC spectrum divided by the power of each source, can
also be used:

S′
i,l(θs) =

Si,l(θs)∑
j

∑
k zl,kti,kvk,j

. (6)

To obtain the source DOA, the MUSIC spectra are summed
over reliable frequency bins for the l-th source:

Sall
l (θs) =

∑
i∈[⌊fmin/fsI⌋,⌈fmax/fsI⌉]

Si,l(θs), (7)

where the frequency band in [fmin, fmax][Hz] are considered
reliable.

B. Permutation evaluation based on MUSIC spectrum discrep-
ancy

The extent of source permutations can be evaluated by com-
paring MUSIC spectra from L sound sources after normalizing
them to set their sums to unity.

Si,l(θs)←
Si,l(θs)∑
s Si,l(θs)

, Sall
l (θs)←

Sall
l (θs)∑

s S
all
l (θs)

. (8)

1δ can be unknown because when the actual microphone spacing is δ′(̸= δ),
aPm is just powered by δ′/δ, (aPm)δ

′/δ . The envelope of the MUSIC spectrum
is constant, despite that the MUSIC spectrum expands or shrinks. For non-
linear array, estimated source direction is unreliable but a distinction between
different sources can be done. Thus, this assumption can be used in the BSS
framework.
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TABLE I
METRICS FOR EVALUATING DISCREPANCY BETWEEN TWO MUSIC

SPECTRA S1 AND S2 . FOR DPD, γ IS SET TO 0.2.

Metrics d·(S1,S2)
dPK |argmaxθ S1(θ)− argmaxθ S2(θ)|
dCS −

∑
θ S1(θ)S2(θ)√∑

θ S2
1(θ)

√∑
θ S2

2(θ)

dSE
∑

θ |S1(θ)− S2(θ)|2
dOR −

∑
θ min (S1(θ), S2(θ))

dKLD
∑

θ S1(θ) log
(

S1(θ)
S2(θ)

)
dDPD

∑
θ

[
1
γ
(S1(θ)γ − S2(θ)γ)

− 1
1+γ

(
S1(θ)1+γ − S2(θ)1+γ

)]

MUSIC spectra S denotes a vector of S(θs) for all θss, i.e.,
S = [S(θ1), ..., S(θS)]

⊤. Table I lists metrics that evaluate the
discrepancy between two MUSIC spectra. Once the metric has
been selected, the total discrepancy is calculated by

D1
· =

1

2

∑
i

∑
l

∑
l′ ̸=l

d· (Si,l,Si,l′) ,

D2
· =

1

2

∑
l

∑
l′ ̸=l

d·
(
Sall
l ,Sall

l′
)
,

(9)

where dot “·” of D{1,2}
· and d· means an arbitrary metric.

The six metrics have the following properties. Peak, dPK

evaluates the discrepancy on the basis of the difference be-
tween the peak indexes of MUSIC spectra. Cosine similarity,
dCS , is a (minus) cosine similarity of them. Square error, dSE ,
calculates the square errors between them. Overlapping region,
dOR, is the proportion of the overlapped region of them.
Kullback-Leibler divergence (KLD), dKLD, and density power
divergence (DPD), dDPD, calculate their KLD and DPD,
which is an efficient and robust divergence [19], respectively.

C. Permutation detection and alignment

The occurrence of the source permutations can be detected
by comparing the sum of source MUSIC spectrum Sall

l with
that at each frequency bin, Si,l, on the basis of the above
metrics d·. If the permutations of the index i are aligned, the
inequation

d·(S
all
l ,Si,l) ≤ d·(S

all
l ,Si,l′) (for ∀l′ ̸= l and ∀i), (10)

holds. For example, as in Fig. 1, the l-th source MUSIC
spectrum Sall

l is compared with that at the certain frequency
bin (here, i = 10), S10,l. In the case of the peak metric dPK ,
the peak of Sall

1 , ϕ1, is nearer to the peak of S10,2, ϕ10,2,
than that of S10,1, ϕ10,1. The inequation, dPK(Sall

1 ,S10,1) =
|ϕ1 − ϕ10,1| > dPK(Sall

1 ,S10,2) = |ϕ1 − ϕ10,2|, holds and
this indicates that a permutation of the source index occurs at
i = 10. For other metrics, this inequation 10 holds.

As a result, the permutations can be aligned as

argmin
Πi

∑
l

d·
(
Sall
l ,Si,Πi(l)

)
, (11)

where Πi is a permutation of L sound sources at the i-th
frequency bin as Πi = {1, 2, ..., L} → {1, 2, ..., L}. The above
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q
sSource direction

Fig. 1. Source MUSIC spectrum summed over all reliable frequency bins,
Sall
{1,2}, and that at the frequency bin i(= 10), Si,{1,2}.
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Fig. 2. Source and microphone positions and BSS settings.

example compares the peak of the MUSIC spectrum of the
l-th source, ϕl, with that for the MUSIC spectrum at each
frequency bin, ϕi,l, and permutation is aligned to make these
peaks nearer for all is as (11). After the permutation Π has
been obtained, H or w is aligned as

Hi,l ←Hi,Πi(l) (for mixing system), (12)
wi,l ← wi,Πi(l) (for demixing system). (13)

D. Schedule of permutation alignment

BSS algorithms begin with no prior knowledge about the
source positions; thus, it is impossible to align permutations
in the initial iterations. The permutation alignment starts after
some iterations, i.e., in the middle of the BSS algorithm.

We devised two types of scheduling for starting the per-
mutation alignment: fixed iteration count and fixed threshold.
The first schedule starts the permutation alignments after a
fixed number of iterations. Preliminary experiments show that
it is better to align permutations at several times with some
intervals than at a single time. The second schedule uses a
fixed threshold, wherein if the total discrepancy metrics D1

or D2 in (9) exceed certain fixed threshold, the permutation
alignment starts. For permutation alignment, stable and distinct
MUSIC spectra are needed. Initially, the MUSIC spectra of
all sources overlap and all total discrepancy metrics take their
minimum values. The results of the experiments depicted in
Fig. 4 show that all metrics almost monotonically increase with
the number of iterations as MUSIC spectra become separable.

IV. BSS EXPERIMENTS

A. Experimental setups

The effectiveness of the proposed permutation alignment
was assessed on BSS of musical pieces2 in underdetermined
(M < L) settings. Fig. 2 shows the source and microphone
positions along with other parameters. Mixed signals were
picked up by two microphones 4 cm apart (M = 2). These

2Musical pieces are publicly available at http://sisec2010.wiki.irisa.fr
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TABLE II
MUSICAL PIECES COMPOSED OF THREE SOURCES.

ID Title Snip [s] Source
1 Ultimate Nz Tour 43-61 guitar, synth, drums
2 The Ones We Love 69-94 drums, guitar, vocals
3 Remember the Name 54-78 violin+synth, vocals, drums
4 Roads 85-99 piano, vocals, ambient
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Fig. 3. Source MUSIC spectra of H corresponding to the best and worst
SDRs among ten trials with different random initializations.

settings were similar to those of [12]. Table II shows the
musical pieces, which was composed of three sources (L = 3)
convolved with the impulse responses from three different
directions, 0, −120, and 90 [deg] (T60 = 100 [ms]).

For MNMF, T , V , and Z were randomly initialized by
ten different random-value seeds. As in [10], [12], Hi,l was
initialized to a unit matrix with Hi,l being constant in the
first 20 iterations. To obtain demixed signals, multi-channel
Wiener filter was applied. For ILRMA, Wi was initialized as
[1 0; 0 1; 0.5 0.5]. The permutation was aligned for the fixed
count schedule at iterations 40, 45, 50, 55, and 60 for MNMF
and at 70, 75, and 80 for ILRMA. The permutation alignment
started for the fixed threshold schedule if D1 exceeded the
half of the maximum value (i.e., D̄1 > 0.5 in Fig. 4). After
that, alignments performed at five times with five intervals.
The reliable frequency band was from fmin = 500 to fmax =
c
2δ = 4250 [Hz]. The separation performance averaged over
ten trials was evaluated in terms of the signal-to-noise ratio
(SDR) [dB] [20].

B. MUSIC spectra for the best and worst SDR cases
The separation performance significantly varied with the

random initial values [12]. Fig. 3 shows the source MUSIC
spectra, Sall

l , derived from the final H for the best SDR case
(= 14.63 [dB]) and the worst SDR case (= 1.63 [dB]) where
three downward arrows indicate the true source directions. The
peaks overlapped more in the worst case. This shows that the
permutation alignment is problematic even for MNMF.

C. Permutation metrics
Fig. 4 shows the normalized D1

· in (9) with the number
of iterations for two different musical pieces. Although the
speed of convergence differed between the pieces, the metrics
had almost converged by 100 iterations. All metrics almost
monotonically increased 3. For the case of D2

· , the trends were

3The metrics did not change in the first 20 iterations because H was not
updated in the first 20.
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Fig. 5. SDR improvement [dB] at each iteration comparing the proposed
method with the conventional MNMF.

similar.

D. BSS results (MNMF)

Fig. 5 shows the SDR improvement at each iteration of
MNMF where alignment in the middle of MNMF iterations
improved the SDR. Fig. 6 shows the average SDR improve-
ment [dB] in the case of the fixed count schedule. “Based
on Eq. (5)” in the figure used the MUSIC spectra in (5)
and “Based on Eq. (6)” used the power-normalized MUSIC
spectra in (6). The performance improved for all metrics.
Power normalization slightly improved the performance. In
average, “PK” and “CS” criterion achieved the best separation
performance.
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Fig. 6. Average SDR improvement [dB] of MNMF for “Ultimate Nz Tour”
and all four pieces with fixed iteration count schedule.
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Fig. 7. Average SDR improvement [dB] of MNMF with fixed threshold
schedule.
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Fig. 9. Average SDR improvement [dB] of ILRMA for each piece with fixed
iteration count and fixed threshold schedule.

Fig. 7 shows the average SDR improvement for the fixed
threshold schedule. This schedule was better than the fixed
count schedule because it can be adjusted to the speed of
convergence, which was different for each piece.

E. BSS results (ILRMA)

Fig. 8 shows the SDR improvement at each iteration of
ILRMA. Although the separation performance of the con-
ventional ILRMA did not improve after 100 iterations, the
proposed permutation alignment in the middle of iterations
also did improve the SDR. Fig. 9 shows the average SDR
improvement. The trends were similar to those of MNMF and
the proposed method was also effective on ILRMA.

V. CONCLUSION

We proposed a permutation alignment method for BSS
algorithms. The method uses the discrepancy of the source
MUSIC spectra obtained from a spatial correlation matrix
as a cue of permutation alignment directly. BSS experiments
on musical pieces show that permutation alignments inherent
in MNMF were insufficient for the poor separation case.
The proposed method improved the BSS performance by
aligning permutations in the middle of the iterations of the
BSS algorithms. The proposed method was effective in the
mixing system approach, MNMF, and in the demixing system
approach, ILRMA. In addition we devised fixed count and
fixed threshold schedule. Although both two schedules were
effective, the latter was better than the former because the
alignment schedule can be adjusted to the speed of conver-
gence.
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