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Abstract—Multi-channel non-negative matrix factorization
(MNMF) is one of the most effective blind source separation
techniques. This paper proposes a stable initialization method of
MNMF by accurately estimating a full-rank spatial correlation
matrix. Alternative initialization can be a rank-1 spatial corre-
lation matrix to be obtained as an outer product of a steering
vector, which is an eigenvector that corresponds to the maximum
eigenvalue of a spatial correlation matrix. This paper compares
full-rank and rank-1 types of initialization. On the other hand,
independent low-rank matrix analysis (ILRMA) accelerates the
matrix factorization by using a rank-1 demixing matrix instead of
a spatial correlation matrix. The above-mentioned initialization
method can be applied to ILRMA. The drawback of ILRMA is
an overdetermined situation where the number of observations is
greater than that of sources. In such cases, special treatments are
necessary for ILRMA to match the number of observations to
the number of sources, whereas MNMF can deal with such cases
naturally. Experiments on a noisy speech recognition task showed
the effectiveness of the proposed initialization method both for
MNMF and ILRMA. For determined cases, ILRMA was faster
and better than MNMF, but for overdetermined cases, even with
special treatments, ILRMA was inferior to MNMF.

Index Terms—blind source separation, rank-1 relaxation,
overdetermined problems, speech recognition

I. INTRODUCTION

Blind source separation (BSS) is especially effective for
processing distant speech when the speaker positions and/or
microphone configurations are unknown. One of the most
effective methods is non-negative matrix factorization (NMF)
[1], [2], which exploits spectral information to decompose
a non-negative observation matrix into basis and activation
matrices.

Multi-channel NMF (MNMF) is a multi-channel extension
of NMF [3]. MNMF additionally exploits spatial information,
but it is difficult to set proper initial values to matrices to be
estimated [4]. Among matrices to be estimated, initial settings
of the spatial correlation matrix most heavily impact the source
separation performance [4], [5]. This paper proposes a com-
pletely blind method for stably initializing a spatial correlation
matrix of MNMF by applying its estimation method on the
basis of soft masking [6].

If the reverberant components fit in the same frame, the
spatial correlation matrices tend to be low-rank. When their
rank is one, these can be represented as an outer product

of rank-1 steering vectors (SVs) related to the target source.
This target source SV can be obtained as an eigenvector
that corresponds to the maximum eigenvalue of the spatial
correlation matrix. Thus, an alternative initialization of a
spatial correlation matrix of MNMF can be a rank-1 spatial
correlation matrix, instead of a full-rank one.

On the other hand, Kitamura et al. [7] introduced a rank-1
relaxation of MNMF called an independent low-rank matrix
analysis (ILRMA). Instead of a spatial correlation matrix of
MNMF, ILRMA uses a rank-1 demixing matrix. ILRMA is
based on a rank-1 demixing system, which is simpler than a
mixing system that MNMF relies on, in order to use a fast BSS
algorithm that is developed for demixing systems. Accurate
SVs obtained by the above-mentioned method can be also used
as an initial demixing matrix of ILRMA.

Basically, ILRMA assumes a determined situation where
the number of observations is the same as that of sources.
Recently, microphones embedded in an environment have
increased; as a result, overdetermined situations where the
number of sources is greater than that of observations occur
more frequently. In such situations, ILRMA needs special
treatments that remove extra observations or cluster separated
sources. In addition to the two types of solutions proposed
by the paper [8], inflated SV initialization considering multi
paths is proposed. Although MNMF with a full-rank spatial
correlation matrix can treat overdetermined cases naturally,
experiments described in Section VII show that MNMF ini-
tialized with a rank-1 spatial correlation matrix lacks stability
in updating it due to a rank deficiency. To avoid this, we
propose an utterance division method to average rank-1 spatial
correlation matrices of divided utterances.

This paper evaluated source separation performance in noisy
automatic speech recognition (ASR) experiments (the fourth
CHiME challenge [9]) in terms of word error rates (WERs).
We also aimed to confirm the effectiveness of ILRMA on
noisy ASR tasks, because the main targets of most previous
ILRMA experiments were music separation. For determined
and overdetermined cases, we compared two types of ini-
tializations of an MNMF spatial correlation matrix with the
initialization of an ILRMA demixing matrix. In experiments
for the overdetermined case, we also validated ILRMA with
special treatments.
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This paper is organized as follows. Section II describes
the conventional MNMF algorithm. Section III covers a
method for accurately estimating spatial correlation and its
application to MNMF initialization. Section IV discusses a
rank-1 relaxation of spatial correlation. Section IV-A details
MNMF initialized with a rank-1 spatial correlation matrix.
Section IV-B describes ILRMA that combines independent
vector analysis (IVA) and NMF. Section IV-C introduces a
demixing matrix initialization. Section V details a problem of
overdetermined cases for MNMF with a rank-1 initial spatial
correlation matrix and proposes an utterance division to solve
it. Section VI covers a special treatment of ILRMA when we
apply ILRMA to overdetermined cases. Section VII describes
experiments we performed for a noisy ASR task.

II. MNMF

NMF factorizes a non-negative observation matrix X into
basis matrix T and activation matrix V . In addition, MNMF
factorizes X into four matrices and clusters K spectral bases
into L sources by using spatial information.

A. Formulation

Observation vector xij is the complex spectra of the short-
time Fourier transform at the i-th frequency bin (1 ≤ i ≤ I)
and the j-th time frame (1 ≤ j ≤ J). xij is composed of
M spectra, [x1, . . . , xm, . . . , xM ]⊤ij , where ⊤ is a transpose
and xm is a spectrum observed at the m-th microphone (1 ≤
m ≤ M). The i, j element of the observation matrix X ∈
(CM×M )I×J is a correlation between them:

Xij = xijx
H
ij =

 |x1|2 · · · x1x
∗
M

...
. . .

...
xMx∗

1 · · · |xM |2


ij

,

where ∗ is a complex conjugate and H is an Hermitian
transpose. Matrix X is a hierarchical matrix whose elements
Xij are M ×M complex semi-definite Hermitian matrices.
MNMF factorizes this X into four matrices (H , Z, T , and
V ) as follows:

X ∼= X̂ = [(HZ) ◦ T ]V , (1)

where ◦ is an Hadamard product. Figure 1 is a graphical
representation of Eq. (1). Matrix H ∈ (CM×M )I×L is a
hierarchical spatial correlation whose i, l element, Hil is a
spatial correlation matrix between M observations for the l-
th source. Matrix Z ∈ RL×K is a set of cluster indicator
latent variables, which relate spatial information to spectral
information. The basis matrix T ∈ RI×K is composed of K
bases and V ∈ RK×J is their activations. The right-hand side
of Eq. (1) is represented as

X̂ij =
∑
k

[∑
l

Hilzlk

]
tikvkj .

Under ideal conditions, the reconstructed matrix X̂ whose
elements are X̂ij is equal to the original X , but in general,
these matrices do not match due to errors. After an arbitrary
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K
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Fig. 1. An example of factorizing an observation matrix X into four matrices
H , Z, T , and V by the multi-channel NMF algorithm (I = J = 7 and
K = L = M = 2).

distance between X and X̂ is defined, the four matrices in the
right-hand side of Eq. (1) are updated to minimize the defined
distance. Here, Itakura-Saito (IS) divergence

dIS(Xij , X̂ij) = tr(XijX̂
−1
ij )− log detXijX̂

−1
ij −M,

is used where tr(·) and det are a trace and determinant of
matrices, respectively. dIS is suitable for music and speech
separation [10].

B. Updating spatial model
The element of the matrix H is updated as a solution of an

algebraic Riccati equation:

HilAHil = B. (2)

Here, coefficients A and B are represented as{
A =

∑
k zlktik

∑
j vkjX̂

−1
ij ,

B = H ′
il

[∑
k zlktik

∑
j vkjX̂

−1
ij XijX

−1
ij

]
H ′

il,

where H ′
il is a matrix Hil before its update. Eq. (2) is solved

as below. Eigenvalue decomposition of 2M × 2M matrix P
consisting of A and B

P =

[
0 −A
−B 0

]
,

gives M negative eigenvalues, e1 ≤ . . . ≤ eM < 0,
and their corresponding eigenvectors, v1, . . . ,vM (vm =
[vm,1, . . . , vm,2M ]⊤). In accordance with the eigenvectors, H
is updated as

Hil ←

v1,M+1 · · · vM,M+1

...
...

...
v1,2M · · · vM,2M


 v1,1 · · · vM,1

...
...

...
v1,M · · · vM,M


−1

.

(3)

C. Updating source model
Matrices T , V , and Z are randomly initialized and updated

through multiplicative update rules [3] in order to minimize
dIS .

tik ←tik

√√√√∑
l zlk

∑
j vkjtr(X̂

−1
ij XijX̂

−1
ij Hil)∑

l zlk
∑

j vkjtr(X̂
−1
ij Hil)

,

vkj ←vkj

√√√√∑
l zlk

∑
i tiktr(X̂

−1
ij XijX̂

−1
ij Hil)∑

l zlk
∑

i tiktr(X̂
−1
ij Hil)

,

zlk ←zlk

√√√√∑
i tik

∑
j vkjtr(X̂

−1
ij XijX̂

−1
ij Hil)∑

i tik
∑

j vkjtr(X̂
−1
ij Hil)

.

(4)
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D. Multi-channel Wiener filtering

After H , T , V , and Z are fixed, the l-th separated source
s̃ijl ∈ CM can be obtained by using a multi-channel Wiener
filter as

s̃ijl = Hil

[∑
k

zlktikvkj

]
X̂−1

ij xij .

III. H INITIALIZED FROM MASKED FULL-RANK
CORRELATIONS

Yoshioka et al. [6] proposed a method for accurately es-
timating spatial correlation by using soft masking based on
complex Gaussian mixture distributions. We combine this and
MNMF to achieve a complete BSS other than conventional
approaches that need approximate source directions [4], [5].
Mask Ωijl, which ranges from 0 to 1, is estimated by the
procedures below. Masks at each bin corresponding to the l-
th source tend to be close to 1 and otherwise close to 0. If
one assumes that the observation vector xij is generated by a
model θ, weighted probabilities for the l-th source are obtained
as pl(xij ; θ) = ΩijlNc(xij ; 0, σijlR̄il), where Nc() is a
complex Gaussian distribution with zero means and variances
of σijlR̄il. Here, σijl is a time-variant power and R̄il is a time-
invariant power-normalized spatial correlation matrix. Model
parameters θ = {R̄, σ,Ω} are estimated by an expectation
maximization (EM) algorithm. In the E step,

Ωijl =
pl(xij ; θ)∑
l pl(xij ; θ)

is obtained and in the M step, model θ is re-estimated on the
basis of this Ω. Spatial correlation matrices averaged over J
frames are Ri, those except the l-th source are R̂il, and those
for the l-th source are Ril. They are

Ri =
1

J

∑
j

Xij ,

R̂il =
1∑

j(1− Ωijl)

∑
j

(1− Ωijl)Xij ,

Rx
il = Ri − R̂il.

(5)

The initial full-rank H of MNMF can be set as

Hil ← Rx
il.

IV. RANK-1 RELAXATION

In many cases, spatial correlation matrices tend to be low-
rank. When the rank of a spatial correlation matrix is one
(rank-1 mixing system), it is particularly easy to deal with.
Fig. 2 shows a rank-1 mixing system where an observed
spectrum xij is represented as a mixture of source spectrum
sij with a time-invariant mixing matrix Ai:

xij = Aisij ,

where Ai ∈ CM×L is a mixing matrix composed of SVs
(ail ∈ CM ) as Ai = [ai1, ...,aiL].

Fig. 2. Rank-1 mixing system in the case of L = M = 2, where observed
spectrum xij is a mixture of source spectrum sij with a mixing matrix Ai.

A. Rank-1 H initialization of MNMF

In rank-1 mixing systems, a spatial correlation matrix is an
outer product of an SV related to the target source. A target
SV, ail, is an eigenvector that corresponds to the maximum
eigenvalue of Rx

il in Eq. (5). The initial rank-1 H is given as

Hil ← aila
H
il .

B. ILRMA

ILRMA is a rank-1 relaxation of MNMF [7], which acceler-
ates a matrix factorization of MNMF by using both a fast IVA
algorithm [11] and a standard NMF (not MNMF) algorithm.

1) Updating spatial model: In a demixing system, es-
timated source spectrum s′ and the observed spectrum x
are related as s′ij = [s′ij1, ..., s

′
ijL]

⊤ = Wixij , where
Wi = [wi1, ...,wiL]

⊤ ∈ CL×M is a demixing matrix. ILRMA
directly estimates this W instead of H by using the IVA
algorithm as

Vil =
1

J

∑
j

1

rijl
Xij ,

wil ← (WiVil)
−1ul,

wil ← wil(w
H
ilVilwil)

−0.5,

where ul is a unit vector whose l-th element is unity and
rijl(=

∑
k zlktikvkj) is an estimated power spectrum of the

l-th source.
2) Updating source model: The NMF algorithm optimizes

T , V , and Z in the multiplicative update rules of NMF, which
are much simpler than those of MNMF (4).

tik ←tik

√√√√∑
l zlk

∑
j |s′ijl|2vkjr

−2
ijl∑

l zlk
∑

j vkjr
−1
ijl

,

vkj ←vkj

√√√√∑
l zlk

∑
i |s′ijl|2tikr

−2
ijl∑

l zlk
∑

i tikr
−1
ijl

,

zlk ←zlk

√√√√∑
i tik

∑
j |s′ijl|2vkjr

−2
ijl∑

i tik
∑

j vkjr
−1
ijl

.

C. Initialization of W from steering vectors

A target SV can be obtained in the same way as given in
Section IV-A. Source SVs compose Ai, which is an inverse
matrix of Wi.

Wi ← A−1
i = [ai1, ...,aiL]

−1.

Except for the target source, non-target source SVs ail can be
initialized as ul.
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Fig. 3. An example of an utterance division with γ overlap.

V. OVERDETERMINED PROBLEMS IN MNMF INITIALIZED
WITH RANK-1 SPATIAL CORRELATION MATRIX

MNMF initialized with a full-rank spatial correlation matrix
(Section III) can deal with overdetermined cases naturally.
However, MNMF initialized with a rank-1 spatial correlation
matrix (Section IV-A) causes unstableness due to a rank
deficiency. In particular, in the case of M ≫ 1, i.e., e1 ≪
e2 ≃ . . . ≃ eM ≃ 0, the inverse of the second matrix on
the right-hand side of Eq. (3) cannot be calculated because of
rank deficiency and the update of H becomes unstable. This
problem becomes serious when M becomes larger. Actually,
the experiments reported in Section VII show that in the case
of M = 2, H can be updated, but in the case of M = 5, H
diverged during its update.

A. Utterance division preventing rank deficiency

To reduce the effects of the above-mentioned rank defi-
ciency, we divide an utterance into S regions as shown in
Fig. 3. In the region s (1 ≤ s ≤ S), speech is overlapped at
the ratio of γ. For total S(≥ M) divisions with each region
composed of N = J/(S + γ(S − 1)) samples, an SV [ail]s
can be obtained from the spatial correlation matrix [Rx

il]s. The
time index j in the s-th region is from (s− 1)(1− γ)N + 1
to (s − (s − 1)γ)N . We propose to average rank-1 spatial
correlation matrices in each region s as

Hil ←
1

S

∑
s

[ail]s[ail]
H
s .

Actually, because a spatial correlation matrix deals with ex-
pectation, it is natural to take an expectation of SVs calculated
in different regions.

B. Update relaxation

Even when initial H can be obtained, during the update,
in the case of ∃m, em ≪ em+1 ≃ 0, it also becomes rank
deficient. To avoid this, at each update, after checking the first
and second eigenvalues (e1 and e2), in the case of e2/e1 < µ,
the update is relaxed by interpolating H ′ and H as

Hil ← αH ′
il + (1− α)Hil. (6)

Here, α is a constant value (0≪ α < 1) and is approximately
equal to one.

Fig. 4. Clustering after separation (M = 4 and L = 2).

VI. OVERDETERMINED PROBLEMS IN ILRMA

Basically, ILRMA can deal with determined cases (M =
L). For overdetermined cases (M > L), it is necessary to
match the number of observations and that of sources. There
are two ways to match the number of observations and that
of separations [8]. The first way is to reduce the number of
observations by principal component analysis (PCA) before
separation (VI-A); the second way is to cluster the number
of separated sources to the desired number by clustering after
separation (VI-B).

A. PCA before separation

Before separation, extra observations (M − L) are reduced
by PCA. By applying PCA to observations, an L-dimensional
vector x ∈ CL can be obtained instead of an M -dimensional
original observed vector.

B. Clustering after separation

After M separated sources s′ij = [s′ij(1), ..., s
′
ij(M)]⊤ =

[s′1, ..., s
′
M ]⊤ij are obtained for the M -dimensional observed

vector, power spectral correlations C between M separated
sources are calculated. When there are multiple paths (e.g.,
reverberation), one original source can be divided into two
separated sources; thus, clustering of separated sources is
needed. Fig. 4 shows a clustering algorithm based on power
spectral correlations C between the m1-th source spectrum
and the m2-th source spectrum as

cm1,m2 = max
τ=0,1,...,τmax

∑
i

∑
j

|s′ij(m1)|2|s′i(j+τ)(m2)|2,

(7)
where τmax is introduced to compensate for the reverberant
components. Starting from the highest correlation pair, clusters
can be made to obtain desired L clustered sources s′′1 , ..., s

′′
L.

C. Initialization from inflated steering vectors

Even for overdetermined cases, IV-C can be used. The
simplest solution is to add dummy steering vectors, ail′ = u′

l

(l′ = (L + 1), ...,M ), which represent non-target sources, to
make Ai a rectangular matrix (M ×M ). With this solution,
however, the number of non-target sources is much greater
than the one target source, which is imbalance. In addition,
there can be multiple paths between the source and micro-
phones. To address this, we can allocate multiple sources
for the one target source by using a target SV with random
perturbations

a′
il ← ail + ϵ,

where ϵ is a Gaussian random variable.
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Fig. 5. Schematic diagrams of evaluated MNMF and ILRMA systems where ED is an eigenvalue decomposition.

If we allocate two sources to represent one target source, we
can inflate SV, a′

i1, instead of ai2(= u2), which is originally
for the non-target source, as

Wi ← A−1
i = [ai1a

′
i1...aiL]

−1.

The first and second separated sources are mixed to obtain the
target source.

VII. NOISY ASR EXPERIMENTS

This section validates the proposed method on the 2ch/6ch
tracks of the fourth CHiME challenge. This was a noisy
ASR task whose vocabulary size was 5,000. Speech data
were recorded by using a hand-held tablet with six embed-
ded microphones. There were four environments: bus (BUS),
café (CAF), pedestrian (PED), and street (STR). Speech was
recorded in a real world “real” and was artificially made
“simu”. There were training, development (Dev), and test
(Test) sets. All parameters were tuned on the Dev set.

Acoustic models were trained on noisy speech without
speech enhancement. The acoustic features were the same
as those of the challenge baseline; feature-space maximum
likelihood linear regression was applied on top of a 13-
dimensional MFCC with delta feature. After decoding by a
deep neural network based model, hypotheses were re-scored
by a recurrent neural network language model (cf. [5]).

In the 2ch track, 2ch randomly selected from frontal posi-
tioned 5ch were used (M = 2). In the 6ch track, 1ch at the
backward position was excluded and all frontal positioned 5ch
were used (M = 5). We compared the proposed method with
the challenge baseline beamformer (denoted as BF) [12].

Fig. 5 shows the schematic diagrams of the evaluated
systems. The parameter settings of MNMF and ILRMA were
I = 513, K = 30, and L = 2 except for ILRMA with
clustering and inflated SVs (L = 5). For this task, the previous
study [5] showed that the conventional MNMF with initial
H , being an identity matrix [3], was inferior to the BF. For
MNMF, the initial value of H for non-target source (l = 2)

was an identity matrix and the other matrices T , V , and Z
were randomly set. A separated source corresponding to the
target speech (l = 1) was extracted for evaluation. The number
of utterance divisions was S = 3 for the 2ch track and S = 6
for the 6ch track. The overlap ratio γ was 25% for the 2ch
track and 75% for the 6ch track. Coefficient α in Eq. (6) was
0.95 and threshold µ is 0.1.

For ILRMA, the initial value of W is an inverse of A where
ail for non-target sources (l ̸= 1) was ul. The other matrices
T , V , and Z were randomly set. For inflated initialization,
two additional SVs were inflated, i.e., ai2 and ai3 were ai1

with random perturbation and separated sources (l = 1, 2, 3)
were mixed for evaluation. For clustering (Eq. (7)), τmax is
set to be two.

A. 2ch track (M = L)

Table I shows the WER of the 2ch track, which is a deter-
mined case. Compared with the baseline without speech en-
hancement (noisy), BF showed significantly improved perfor-
mance. MNMF initialized from a full-rank spatial correlation
matrix (MNMF (full-rank)) improved WER by 0.8% compared
with BF. On the other hand, MNMF initialized with a rank-
1 spatial correlation matrix (MNMF (rank-1)) was inferior
to MNMF (full-rank). MNMF with the proposed utterance
division (S = 3) (MNMF (rank-1 (3div))) improved the
WER by 1.0%. Averaging can help to improve the separation
performance, but it was inferior to MNMF (full-rank). ILRMA
with the proposed W initialization based on an SV estimation
was more effective than MNMF (full-rank) by 0.4%. For this
case, ILRMA was better and faster than MNMF.

B. 6ch track (M > L)

Table II shows the WER of the 6ch track, which is an
overdetermined case. MNMF initialized with a rank-1 spatial
correlation matrix (MNMF (rank-1)) diverged 544 out of 820
utterances (66.3%) for the Dev set (BUS). The proposed
utterance division (S = 6) (rank-1 (6div)) reduced this to only
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TABLE I
WER[%] OF THE FOURTH CHIME CHALLENGE (2CH TRACK).

Dev Test Avg.
simu real simu real

Baseline
noisy 13.29 11.55 20.68 23.03 17.14
BF 9.50 8.23 15.34 16.58 12.41

MNMF + H initialization
full-rank 8.47 7.78 14.44 15.77 11.62
rank-1 8.95 8.48 15.96 17.86 12.81

rank-1 (3div) 8.78 7.79 14.39 16.25 11.80
ILRMA + W initialization

rank-1 8.48 7.62 13.76 15.18 11.26

TABLE II
WER[%] OF THE FOURTH CHIME CHALLENGE (6CH TRACK, 5

MICROPHONES USED IN EXPERIMENTS).

Dev Test Avg.
simu real simu real

Baseline
BF 6.77 5.75 10.91 11.46 8.72

MNMF + H initialization
full-rank 4.85 5.59 7.34 12.34 7.53
rank-1 NaN (66% utterances diverged)

rank-1 (6div) 4.77 5.01 8.01 11.62 7.35
ILRMA with PCA + W initialization

rank-1 9.69 7.94 22.20 19.42 14.81
ILRMA with clustering

cluster 1 22.39 24.05 13.77 34.52 23.68
cluster 2 84.39 83.22 93.17 85.73 86.63

oracle 10.42 11.18 10.56 23.78 13.99
ILRMA + W initialization

rank-1 5.38 5.12 9.61 11.54 7.91
ILRMA + W initialization with inflated SVs

rank-1 8.79 7.80 11.60 18.42 11.65

8 out of 3280 utterances (0.2%) for the Dev set. In addition, the
performance was 1.4% better than that of BF and 0.18% better
than that of MNMF (full-rank), which shows the effectiveness
of the proposed averaging. ILRMA with PCA or clustering
were inferior to MNMF and even to BF. For ILRMA with
clustering, it is difficult to choose the target source from two
separated clusters in a blind manner. Oracle was an upper limit
performance when the better hypotheses per utterance can be
chosen from two, but it was equivalent to ILRMA with PCA.
ILRMA with the proposed W initialization outperformed BF
and ILRMA with such special treatments, but was inferior
to MNMF. SV inflation did not improve the performance,
although it was better than PCA and clustering. In this case,
the consideration of multi paths was not necessary. For this
overdetermined case, MNMF was more stable and effective
than ILRMA and MNMF with the proposed utterance division
achieved 0.6% better performance than ILRMA.

VIII. CONCLUSION

This paper proposes a method for stably initialing multi-
channel non-negative matrix factorization (MNMF) by ac-
curately estimating spatial correlation on the basis of soft
masking. Two types of initial settings of spatial correlation

matrices were compared. One was a full-rank spatial corre-
lation matrix and the other was a rank-1 spatial correlation
matrix obtained from an outer product of the target source
steering vector, which is an eigenvector that corresponds to
the maximum eigenvalue of the spatial correlation matrix.
Experiments showed that the update of MNMF initialized
with a rank-1 spatial correlation matrix sometimes diverged.
To address this problem, we propose an utterance division
method and an update relaxation. These methods stabilized the
update procedure and improved the separation performance.
Experiments showed that the performance of MNMF with
both initialization was equivalent. In addition, we introduced a
demixing matrix initialization into independent low-rank ma-
trix analysis (ILRMA), which is a rank-1 relaxation of MNMF.
For determined cases, ILRMA with the proposed demixing
matrix initialization was better and faster than MNMF. Even
for overdetermined cases, ILRMA with the proposed demixing
matrix initialization was better than ILRMA with special
treatments that match the number of observations and that
of sources, however, it was inferior to MNMF. MNMF with
proposed utterance division achieved the best performance for
such cases.

REFERENCES

[1] D.D. Lee and S. Seung, “Learning the parts of objects by non-negative
matrix factorization,” Nature, 401, 788–791 (1999).

[2] P. Smaragdis, “Convolutive speech bases and their application to super-
vised speech separation,” IEEE Trans. on Audio, Speech and Language
Processing, 15, 1–12 (2007).

[3] H. Sawada, H. Kameoka, S. Araki, and N. Ueda, “Multichannel exten-
sions of non-negative matrix factorization with complex-valued data,”
IEEE Trans. on Audio, Speech, and Language Processing, 21, 971–982
(2013).

[4] I. Miura, Y. Tachioka, T. Narita, J. Ishii, F. Yoshiyama, S. Uenohara,
and K. Furuya, “Analysis of initial-value dependency in multichannel
nonnegative matrix factorization for blind source separation and speech
recognition (in Japanese),” IEICE Trans. on Information and Systems,
J100-D, 376–384 (2017).

[5] Y. Tachioka, T. Narita, I. Miura, T. Uramoto, N. Monta, S. Uenohara,
K. Furuya, S. Watanabe, and J. Le Roux, “Coupled initialization of
multi-channel non-negative matrix factorization based on spatial and
spectral information,” Proc. of INTERSPEECH, 2461–2465, (2017).

[6] T. Yoshioka, N. Ito, M. Delcroix, A. Ogawa, K. Kinoshita, M. Fujimoto,
C. Yu, W.J. Fabian, M. Espi, T. Higuchi, S. Araki, and T. Nakatani,
“The NTT CHiME-3 system: Advances in speech enhancement and
recognition for mobile multi-microphone devices,” Proc. of ASRU, 436–
443, (2015).

[7] D. Kitamura, N. Ono, H. Sawada, H. Kameoka, and H. Saruwatari,
“Efficient multichannel nonnegative matrix factorization exploiting rank-
1 spatial model,” Proc. of ICASSP, 276–280, (2015).

[8] D. Kitamura, N. Ono, H. Sawada, H. Kameoka, and H. Saruwatari,
“Relaxation of rank-1 spatial constraint in overdetermined blind source
separation,” Proc. of EUSIPCO, 1271–1275, (2015).

[9] E. Vincent, S. Watanabe, A.A. Nugraha, J. Barker, and R. Marxer, “An
analysis of environment, microphone and data simulation mismatches in
robust speech recognition,” Computer Speech and Language, 46, 535–
557 (2016).

[10] C. Févotte, N. Bertin, and J. Durrieu, “Nonnegative matrix factorization
with the Itakura-Saito divergence: With application to music analysis,”
Neural Computation MIT Press, 21, 793–830 (2009).

[11] N. Ono, “Stable and fast update rules for independent vector analysis
based on auxiliary function technique,” Proc. of WASPAA, 189–192,
(2011).

[12] X. Anguera, C. Wooters, and J. Hernando, “Acoustic beamforming for
speaker diarization of meetings,” IEEE Trans. on Audio, Speech and
Language Processing, 15, 2011–2023 (2007).

TM1C-1 2018 International Symposium on Intelligent Signal Processing and Communication Systems (ISPACS 2018), Nov. 27–30, 2018

251


