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Abstract—This paper proposes an effective sequential initial-
ization for multichannel nonnegative matrix factorization to ad-
dress the difficulty of initial value dependency of the conventional
method. The proposed method sets initial values of parameters
from those obtained for the smaller number of channels. The
experimental results of music separation show that the proposed
method outperforms the conventional method.

I. INTRODUCTION
The spread of voice-controlled devices renders speech en-

hancement and noise reduction more important [1]. One of
the most effective methods of addressing such problems is
nonnegative matrix factorization (NMF) [2]. NMF factorizes
an observation matrix into two matrices: a base and an activa-
tion matrix. In the field of acoustics, a multichannel extension
has been proposed to consider spatial information of sound
sources [3, 4]. Conventional multichannel NMF (MNMF) has
a problem in that the separation performance is dependent on
the initial values due to local minima [5]. In addition, as the
number of channels increases, this initial-value dependency
becomes more significant. To address this problem, this paper
proposes a sequential initialization for MNMF. Experiment
shows the effectiveness of our proposed method.

II. MNMF ALGORITHM
MNMF decomposes an observation matrix X into four

matrices (H, Z, T, and V) to realize source separation without
prior learning. MNMF clusters spectral bases into L sources
using spatial information [3].

A. Formulation
An observation vector is defined as x̃ = [x̃1, . . . , x̃M ]⊤,

where M is the number of channels and ⊤ denotes the
transpose. Here, x̃m is the complex spectrum of the short-time
Fourier transform at the mth microphone. At the frequency
bin i (1 ≤ i ≤ I) and the time frame j (1 ≤ j ≤ J), an
observation matrix X is represented as

X = x̃mx̃H
m =

 |x̃1|2 · · · x̃1x̃
∗
M

...
. . .

...
x̃M x̃∗

1 · · · |x̃M |2

 (1)

where * denotes the complex conjugate and H denotes the
Hermitian transpose. Matrix X is a hierarchical Hermitian pos-
itive semi-definite matrix whose elements are M×M complex
matrices. Fig. 1 shows that this matrix X is decomposed into
four matrices. The basis matrix T (∈ RI×K) consists of K

Fig. 1. Example of a decomposed matrix by using MNMF (Gray denotes
complex values)

bases, and the activation matrix V (∈ RK×J ) consists of the
activations of each basis. The spatial correlation matrix H
indicates the spatial information of the sound sources, and
the latent variable matrix Z (∈ RL×K) associates the spatial
information of the sound sources with each basis. Similar to X,
the matrix H is a hierarchical Hermitian positive semi-definite
matrix whose elements are M × M complex matrices. This
decomposition is defined as

X ≈ X̂ = (HZ ◦T)V (2)

where ◦ denotes the Hadamard product. The right-hand side
of Eq. (2) can be represented as

X̂ij =
K∑

k=1

(
L∑

l=1

Hilzlk

)
tikvkj . (3)

Ideally, X̂ whose elements are X̂ij matches with X. However,
in general, an error causes a discrepancy between them.
To calculate the difference between them, Itakura-Saito (IS)
divergence DIS is employed as

DIS(Xij , X̂ij) = tr(XijX̂
−1
ij )− log detXijX̂

−1
ij −M

where tr(·) is the trace of a matrix.

III. PROPOSED SEQUENTIAL INITIALIZATION

As mentioned above, the separation performance of MNMF
heavily depends on initial values of the spatial correlation
matrix H [5]. Therefore, we focus upon H and propose
its sequential initialization with increasing the number of
channels. Fig. 2 shows the sequential initialization graphically.
First, the separation is performed for the M channels. Second,
we set the obtained H of the M channels to a submatrix
of initial H for M + 1 channels. Finally, we perform this
process sequentially with increasing the number of channels
from M = 2 to M = 5.



Fig. 2. Sequential initialization algorithm

TABLE I
MICROPHONE IDS OF EACH CHANNEL

2ch 6, 8
3ch 6, 8, 10
4ch 4, 6, 8, 10
5ch 4, 6, 8, 10, 12
6ch 2, 4, 6, 8, 10, 12

IV. EXPERIMENTS
A. Experimental setups

The mixed signals were created by convoluting dry sources
of music with impulse responses of the RWCP database
measured in the environment of Fig. 3 (room E2A). The
microphones were arranged from right (ID 1) to left (ID 14).
The music data consisted of three instruments (guitar, synth,
and drums). The microphone IDs used for the experiment are
shown in Table I. The microphone array of the M+1 channels
included the same microphones of the microphone array of
the M channels. The distance between adjacent microphones
was 5.66 cm. The performance was evaluated in terms of the
signal-to-distortion ratio (SDR). As in the literature [3], H
had diagonal matrices with 1/M diagonal elements, and the
elements of Z had random values between 0.2 and 0.4. The
initial H of the proposed method for M = 2 was calculated
from binary-masking and the cross-spectrum method [5]. We
prepared ten initial-value patterns of Z, T, and V generated
from the uniform distribution and performed sound source
separation ten times for each channel. Ten different source
separation results were obtained. We compared the proposed
method with random sequential setting of the obtained H from
above ten H’s (“unsupervised method”) with two supervised
versions of our proposed method (“upper limit” and “lower
limit”).

• Sequential setting of the obtained H for M channels with
the highest SDR (“upper limit”)

• Sequential setting of the obtained H for M channels with
the lowest SDR (“lower limit”)

In addition, two types of the conventional methods were
compared.

• Setting of H calculated by binary masking and a cross-
spectral method for each channel (“binary+cross”)

• Random initialization of H (“conventional method”)

B. Results and discussion
Fig. 4 shows the SDR of the experiments. For all cases, the

separation performance of the proposed method was better
than that of the conventional methods. Random sequential
setting of H (unsupervised method) did not necessarily im-
prove, the separation performance with increasing the number
of channels. The performance of the unsupervised method lay
between the upper and the lower limits. The comparison of the
proposed method with “binary+cross” shows the effectiveness
of the sequential setting especially for four, five and six

Fig. 3. Recording condition

Fig. 4. SDR of the music separation experiment

channels, because the conventional method has too many free
parameters to deal with and it is prone to the local minima. The
sequential setting of H can be used to estimate good parameter
settings avoiding local minima, but in the case of five and
six channels of the unsupervised method, the performance
was lower than that of the four channel case, which was the
best one. On the other hand, in the case of the upper limit
(supervised method), the result of six channels was the best.
This shows that the appropriate initial H was not selected for
five and six channels by the unsupervised method. If the best
initial H can be found for each channel, SDR will be improved
further.

V. CONCLUSION
This paper proposed a sequential initialization method to

resolve the problem of initial-value dependency with increas-
ing the number of channels. Experimental results show that
the proposed method outperformed the conventional methods.
Future work will seek some criteria for selecting appropriate
initial values from some candidates in an unsupervised manner.
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