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Abstract—To improve the performance of noisy automatic
speech recognition (ASR), it is effective to prepare multiple ASR
systems that can address the large varieties of noise. However,
the optimal ASR system is different for each environment
and mismatches between training and testing degrade ASR
performance. In this situation, the overall system combination
of multiple systems is effective; however, the computational
resources increase in proportion to the number of systems. This
paper proposes a method to select an optimal single system from
multiple systems. The selection is based on the estimated word
error rates of a respective system by using the i-vector similarities
between training and test data. The experiments on the third
CHiME challenge show that our proposed method can efficiently
select a single system from multiple systems with different speech
enhancement and feature transformation methods to improve the
overall performance without increasing computational resources.

I. INTRODUCTION

Automatic speech recognition (ASR) is a key component
for many “hands-free” applications in various environments.
Speech applications are widely used, because speech input
is faster than keyboard input. To increase the practicality of
ASR systems, distant-talking input is much more desirable
than close-talking input; however, noise or interferences sig-
nificantly degrade ASR performance. To address this problem,
many methods have been proposed to improve ASR perfor-
mance under noisy environments such as speech enhancement
(SE), feature transformation, and discriminative methods. Each
method has a specialty for specific noise and no universal
solution exists. The optimal ASR system is different for each
utterance and the number of their combination is enormous.
Although overall combination of their hypotheses can improve
the performance, the computational resources increase in pro-
portion to the number of systems. If the single optimal system
can be picked up from many ASR systems prior to SE and
ASR decoding, the computational resources do not increase.
For example, if there are two systems and the first system
is apparently superior to the second system for environment
A and the second system is superior to the first system for
environment B, it is better to select an optimal single system
than to combine systems in terms of a computational resource.

In this paper, we propose an efficient system selection
method based on the estimated word error rates (WERs) of
ASR systems before performing SE and ASR decoding. Pre-
vious studies [1], [2] used perceptual evaluation speech quality
(PESQ) scores to predict WERs; however, the calculation of
PESQ scores requires clean speech, which cannot be obtained

for evaluation data. Even if PESQ scores can be obtained,
these kinds of estimations also require enhanced speech, thus
it is necessary to perform at least SE before selection. On
the other hand, limited to reverberation, the performance is
estimated from room acoustic parameters [2], [3] but these
types of estimations need room acoustic impulse responses
and this is not a realistic assumption. Another study [4] used
recognition hypotheses; however, in order to select the optimal
SE method, it is inefficient to perform SE and ASR decoding
for every system. In addition, if multiple hypotheses have been
already obtained, system combination is better than system
selection. Our method uses i-vectors, which represent speaker
and channel characteristics [5], [6] of original noisy speech for
estimating WERs via cosine similarities between the training
and test data. It is unnecessary to perform not only ASR
decoding but also SE. A related approach is [7], which uses
i-vectors for clustering training data but whose objective is
different from our approach.

This paper validates the effectiveness of the proposed ap-
proach on the third Computational Hearing in Multisource
Environments (CHiME) challenge [8]. The third one has
been released after the success of two challenges: the first
CHiME challenge, which was a simple keyword recognition
task [9] and the second CHiME challenge, which additionally
contained a medium vocabulary recognition task (track 2) [10].
We showed the effectiveness of SE and various state-of-the-art
ASR techniques for this second CHiME challenge track 2 [11],
[12]. The third CHiME challenge is also a medium vocabulary
task, which aims to improve the performance of ASR systems
in four different public environments such as cafés or streets
by using six tablet-embedded microphones. In addition, there
are two different conditions in the third CHiME challenge: real
(“Real”) and simulation data (“Sim.”). To overcome this chal-
lenging task, we prepare multiple ASR systems with different
SE methods and various feature transformations. As mentioned
above, the optimal system is different for each environment.
In this case, the SE method attached to the challenge baseline
performs well for Sim., whereas our employed SE method
(maximum signal-to-noise ratio (SNR) beamformer (BF) [13])
performs well for Real. For this type of situation, system
combinations–e.g., recognizer output voting error reduction
(ROVER) [14]–can refine hypotheses by majority voting of
the hypotheses of multiple systems. Actually, when increased
computational resources can be ignored, system combination
is a more robust solution for mismatch and diversity of
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Fig. 1. Schematic diagram of the proposed ASR systems.

environments [15], [16]. Experiments show that the proposed
optimal ASR system selection method is effective to exploit
the better performance from multiple different systems without
increasing computational resources.

II. SYSTEM OVERVIEW

Figure 1 shows two types of systems; one is the proposed
system selection type and the other is a conventional system
combination type. The system selection type selects a single
system based on i-vectors (Section V) whereas the system
combination type combines multiple systems’ hypotheses to
refine the hypotheses by ROVER. There are multiple systems
using different SE methods and different feature transfor-
mations. Each system has a noise suppression component
(CHiME challenge-provided baseline and max SNR BF (Sec-
tion III)) and an ASR decoding component. The ASR decoding
component uses either Gaussian mixture model (GMM) or
deep neural network (DNN) acoustic model with sequence
discriminative training (Section IV-C) after feature transforma-
tion including bottleneck (BN) features and vocal tract length
normalizations (VTLNs) and feature adaptation (Section IV-A
and IV-B). In addition, rescoring of language model scores is
used by an interpolation of original tri-gram model scores and
recurrent neural network language model (RNN-LM) scores.

III. SPEECH ENHANCEMENT METHODS

SE is performed before ASR and a blind SE method is used
because speaker positions are unstable. Two types of blind
methods are prepared.

A. Challenge baseline

This method estimates a direction of arrival by a nonlinear
SRP-PHAT pseudo-spectrum [17]. After target direction is
obtained, Viterbi algorithm is used for calculating transi-
tion probabilities between successive speaker positions. These
probabilities are related to the distance between the speaker

and microphone array. The multichannel spatial covariance
matrices are estimated from noise signals in 5 seconds, which
are added before the speech. Using these matrices, time-
varying minimum variance distortionless response beamform-
ing with diagonal loading [18] enhances speech with taking
possible microphone failures into account.

B. Maximum SNR BF

In addition to the challenge baseline, we employ a maximum
signal-to-noise ratio (max SNR) beamformer (BF) [13], which
is one of the statistically optimal BFs [19]. The enhanced
speech spectrum at frame t and frequency bin ω, yt,ω ∈ C, is
obtained from Ncch original spectrum xt,ω ∈ CNc×1 with a
mask wω ∈ C1×Nc :

yt,ω = wωxt,ω. (1)

According to the voice activity detection results, SNR λω is
defined as

λω =
wωRsw

H
ω

wωRnwH
ω

, (2)

where Rs and Rn are covariance matrices in the speech
and noise frames, respectively, and H denotes the Hermitian
transpose operation. The mask wω that maximizes SNR λω

corresponds to a solution to a general eigenvalue problem:

wωR
H
s = λωwωR

H
n . (3)

IV. DNN WITH FEATURE TRANSFORMATION AND
DISCRIMINATIVE TRAINING

A. Feature-space adaptation for DNN

To normalize the large variations of features among speakers
and noises, feature adaptation is still effective for DNN.
This paper validates feature-space maximum likelihood lin-
ear regression (fMLLR) [20] with speaker adaptive training
(SAT) [21]. Feature adaptation methods can improve ASR
accuracies in noisy environments by adapting to unknown and



changing noise conditions [20], [22]. Conventional fMLLR
is applied for DNN [23], [24], [25] after ASR decoding is
performed using GMM. fMLLR types of feature adaptations
maximize a likelihood L for normal distributions N of the j-
th state and m-th mixture with the mean µjm and covariance
Σjm as

Ljm(ot) = |A| N (ôt|µjm,Σjm) , (4)

where ot is an observation at frame t and ôt is a transformed
feature as

ôt ≜ Aot + b = A′
[
ot

1

]
. (5)

After adaptation, transformed features ôt can be input in the
same manner as the original feature. However, widely-used
filter bank (fbank) features cannot be represented well by a
diagonal covariance GMM [23]. For this limitation, fMLLR
with fbank features did not improve the ASR performance
[26] and it is necessary to de-correlate fbank features before
adaptation. In the adaptation phase, a global maximum like-
lihood linear transformation (MLLT) [27] M is applied to
de-correlate fbank features, whereas in the decoding phase, an
inverse MLLT M−1 is applied to de-correlated and adapted
fMLLR features as

ôt = M−1A′
[
Mot

1

]
. (6)

B. BN and VTLN features

Two types of additional feature transformations are inves-
tigated: BN features [28], [29] and VTLN [30], [31], [32].
Before DNN prevailed, to combine neural networks with a
conventional GMM, a tandem structure was used [33]. This
approach has been extended to DNN and its extension–the
BN feature–is widely used because conventional GMM can be
used for decoding and features can be easily adapted for these
types of structures. The BN feature is a lower dimensional
hidden-layer unit output. To extract BN features, DNN is
trained to predict phoneme states when the hidden layer size
is smaller than the input layer size.

VTLN is another type of speaker normalization technique.
Among several VTLN methods, we employ a simple linear
approximation approach [32]. To approximate usual VTLN
warped features oα

t with different warping factors α’s, linear
VTLN uses linear transformations Aα and offsets bα, which
map an original feature ot to the warped feature oα

t as

oα
t ≈ Aαot + bα. (7)

These parameters (Aα and bα) are obtained to minimize
square errors

Aα, bα ← arg min
Aα,bα

|oα
t − (Aαot + bα)|2 , (8)

by using a subset of training data.

C. sMBR discriminative training of DNNs

Since ASR is a sequence-level pattern recognition problem,
the performance of the sequence-level pattern recognition is
more important than that of the frame-level. DNNs are already
discriminative at the frame level cross entropy, however,
sequence-level discriminative training further minimizes the
classification errors on the whole sequence [34]. Thus, the
hybrid architecture with hidden Markov models (HMMs) has
still been a mainstream for ASR.

A DNN model with parameters θ outputs posterior proba-
bilities pθ(j|ot) of the j-th HMM state. These probabilities
are computed using a softmax layer:

pθ(j|ot) =
exp aθ(j|ot)∑
j′ exp aθ(j

′|ot)
, (9)

where aθ is the output of the top layer. Each layer of the DNN
transforms the outputs of the previous layer through an affine
transform, whose parameters are a subset of θ, followed by a
non-linear operation such as a sigmoid.

In order to use the classical HMM-based decoding frame-
work, hybrid DNN-HMM systems replace the acoustic likeli-
hood of GMMs with a pseudo-likelihood pθ (ot|j) as

pθ (ot|j) ∝
pθ (j|ot)

p0 (j)
, (10)

where p0 (j) is the prior probability calculated from the count
of the states in the training data.

The parameters θ are trained discriminatively according to
the sequence-level minimum Bayes risk (sMBR) criterion:

FsMBR(θ) =
∑
r

∑
s pθ

(
o(r)|Hs

)κ
pL(s)A(s, s

(r))∑
s pθ

(
o(r)|Hs

)κ
pL(s)

, (11)

where o(r) is the rth utterance observation vector (o1,o2, . . .);
s is a hypothesis of the ASR systems for the reference s(r);
pL is the likelihood of a language model; κ is an acoustic
scale; and A is the raw frame accuracy. The gradient of the
objective function with respect to aθ can be obtained as

∂FsMBR(θ)

∂aθ(j)
=

∑
j′

∂FsMBR(θ)

∂ log pθ
(
o(r)|j′

) ∂ log pθ
(
o(r)|j′

)
∂aθ(j)

,

= κγj,t

(
Â(j)− Â

)
, (12)

where Â(j) is the average accuracy of all hypotheses in the
lattice whose state at frame t is j; Â is the average accuracy
of all hypotheses; and γj,t is the posteriors of state j for all
hypotheses in the lattice. The back-propagation procedure with
Eq. (12) updates θ.

V. OPTIMAL ASR SYSTEM SELECTION BASED ON AN
ESTIMATED WER VIA I-VECTOR SIMILARITIES

We propose an efficient optimal system selection method
that estimates the best performing single system among multi-
ple systems for an unknown utterance based on the i-vector [5],
[6]. For all training data, WERs per utterance, Wtr, are
obtained a priori.



Algorithm 1 Algorithm of the proposed optimal system
selection method
Input: i-vector for all training data ztr, and WER for all

training data and all prepared ASR systems Wtr(i) where
i is a system ID
for rev = 1 to (# of evaluation utterances) do

Extract i-vector z(rev)
ev

for rtr = 1 to (# of training utterances) do
Compute similarities σ

(
z
(rev)
ev , z

(rtr)
tr

)
end for
Find the most similar utterance r̂tr as in Eq. (14)
Find the best ASR system î for the utterance r̂tr as in
Eq. (16)

end for
Output: The optimal system IDs for all evaluation utterances
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Fig. 2. Example of the proposed optimal system selection method.

i-vectors are derived from a factor analysis that decomposes
speech into a speaker/channel invariant part and a variant part
as

V (r) = v + Tz(r), (13)

where V (r) is a GMM super vector adapted to the utterance
r and is dependent on a speaker and a channel; v is a GMM
super vector, which is independent of the speaker and the
channel and is obtained from a universal background model;
T is a low-rank rectangular matrix composed of basis vectors
that span all variable spaces; and z(r) is an i-vector for an
utterance r.

Utterance similarities σ are calculated from i-vectors for
evaluation data z

(rev)
ev and those for training data z

(rtr)
tr . The

most similar utterance r̂tr to the evaluation data rev is picked
up from the training data as

r̂tr ← arg max
rtr

σ
(
z(rev)
ev , z

(rtr)
tr

)
. (14)

For similarity, e.g., cosine similarity (15) can be used.

σ
(
z(rev)
ev ,z

(rtr)
tr

)
=

z
(rev)
ev · z(rtr)

tr∣∣∣z(rev)
ev

∣∣∣ ∣∣∣z(rtr)
tr

∣∣∣ . (15)

After the most similar utterance is found in the training data,
the optimal system î is selected in the reference of WERs of
training data as in Eq. (16) because similar utterances ought
to have similar ASR performances.

î← arg min
i

W
(r̂tr)
tr (i). (16)

Here, W (r̂tr)
tr (i) is a WER of the i-th system for the utterance

r̂tr
1. Algorithm 1 shows the detailed procedure of the proposed

method.
Fig. 2 shows an example of the proposed optimal system

selection. In this case, there are two systems. First, respective
WERs for all training data utterances are obtained. Next, for
the given test data, i-vectors are calculated and the most similar
utterance in the training data is found based on the i-vector
similarity σ. In this case, the most similar utterance of the first
utterance of the test data is the first utterance in the training
data. Finally, in the reference of WER of the most similar
utterance, the optimal system is selected. For the first utterance
of the test data, the system two is selected because the WER
of the second system is better than that of the first system.

VI. EXPERIMENTAL SETUPS

We validated the effectiveness of our proposed approach
for the third CHiME challenge [8]. As mentioned in the
introduction, this is a medium-vocabulary noisy ASR task
whose speech utterances are taken from the Wall Street Journal
database. There are two types of data: real data (“Real”) and
simulated data (“Sim.”). The real data were recorded in the real
world, whereas the simulated data were created by convolving

TABLE I
NUMBER OF UTTERANCES AND SPEAKERS IN EACH DATASET OF THE

THIRD CHIME CHALLENGE.

# utterances # speakers
dataset Real Sim. Real Sim.

Training set 1,600 7,138 4 83
Development set 1,640 1,640 4 4

Evaluation set 1,320 1,320 4 4

TABLE II
SETUP FOR THE ASR SYSTEMS.

Sampling frequency 16 kHz
Window length 25 ms
Window shift 10 ms

Features (GMM) 0–12th MFCCs + ∆ + ∆∆
Features (DNN) 0–22th filter banks + ∆ + ∆∆

HMM states 2,500 shared triphone states
Number of Gaussians 15,000
DNN nodes per layer 1024 nodes

DNN layer size 7 layers
Vocabulary size 5,000

1An average or an weighted average of WERs of the N-best results can be
used for Wtr instead of WERs of the 1-best results.



clean speech with impulse responses and adding noise. Each
type of data has four environments: bus, café, pedestrian, and
street. WERs below are averaged over four environments.
Table I shows the dataset description. The training set has
1,600 and 7,138 utterances by 4 and 83 speakers for Real
and Sim, respectively. The development (Dev.) and evaluation
(Eval.) set have 1,640 and 1,320 utterances, respectively, by
4 speakers both for Real and Sim. This paper evaluated
noisy speech, challenge-provided enhanced speech (“enh1”),
and our enhanced speech (“enh2”). After multiple systems
were constructed with two types of SE and various feature
transformations, the optimal systems were selected by our pro-
posed method or their hypotheses were combined by ROVER.
Finally, language model scores were rescored by interpolating
n-gram language model scores and recurrent neural network
language model (RNN-LM) scores [35], [36]. The setups for
RNN-LM were the same to those attached to the Kaldi WSJ
example.

There were two types of acoustic feature settings. The first
setting was MFCC with feature transformations. In addition
to the standard 0–12th order MFCC features with ∆ and
∆∆, linear discriminant analysis (LDA) [37] compressed the
static MFCCs in nine contiguous frames into 40-dimensional
features before a global MLLT [27] was applied. The second
setting started from the 0–22nd order fbank features with ∆
and ∆∆. For fMLLR, MLLT was used to de-correlate the
features before adaptation. For both settings, to reduce the
variances between speakers, SAT [21] was used where training
is conducted after having transformed the training speech into
a canonical space. The BN feature was a 40-dimensional
hidden-layer unit output of DNN with two hidden layers. The
warping parameters of linear VTLN were changed from 0.85
to 1.25 with a step of 0.01.

We trained DNNs after GMMs by using the Kaldi toolkit
[38]. Table II shows the ASR setup. The detailed training
procedure of GMMs was in [11], [12]. The number of mono-
phones was 40, including silence. The number of context-
dependent tri-phone states was 2,500 and the total number of
Gaussians was 15,000. The parameters used in our experiments
were the same to those in the challenge provided baseline.
We used “nnet1” of the Kaldi toolkit for DNN training.
Starting from the seven-layer restricted Boltzmann machine,
the DNN was constructed where each hidden layer has a
sigmoid activation. The learning rate was decreased from
the initial learning rate (0.008) if the decrease of CE in the
development set was under the threshold. Features across nine
concatenated frames were inputted and the number of nodes
per hidden layer was 1,024. We investigated the performance
change when using feature-space boosted maximum mutual
information (f-bMMI) [39] for GMM and sMBR for DNN.

VII. RESULTS AND DISCUSSIONS

A. GMM-based baseline ASR systems

Table III shows the average WER of GMM-based ASR
systems on the Dev. and Eval. set. For all cases, SE improved
the performance; “enh1” significantly improved the WER for

TABLE III
AVERAGE WER [%] ON THE DEVELOPMENT AND EVALUATION SET OF

THE THIRD CHIME CHALLENGE USING GMM ACOUSTIC MODELS. THE
EFFECTIVENESS OF FEATURE TRANSFORMATION AND ADAPTATION (FTA)

AND DISCRIMINATIVE TRAINING (DT) IS SHOWN. TWO TYPES OF SE
METHODS (ENH1 (CHALLENGE BASELINE) AND ENH2 (MAX SNR BF))

WERE EVALUATED IN ADDITION TO NOISY SPEECH.

FTA DT Dev. set Eval. set
Real Sim. Real Sim.

noisy
26.90 24.40 43.06 30.70

✓ 18.44 17.74 31.87 21.96
✓ 16.04 14.78 27.05 17.16

enh1
26.80 13.51 47.66 15.65

✓ 19.92 9.76 35.78 11.16
✓ 17.70 7.60 32.12 8.97

enh2
21.35 16.51 36.49 22.77

✓ 14.76 11.70 27.41 16.25
✓ 12.43 9.05 21.61 13.33

Sim. but provided little improvement for Real. On the other
hand, “enh2” significantly improved the WER for Real but was
less effective for Sim. than “enh1”. Feature transformation and
adaptation (FTA in the figure) led to the WER improvement of
7–11%. From now on, the WER improvements were evaluated
in terms of an absolute value. Discriminative training (DT in
the figure) resulted in the additional WER improvements of
approximately 2–3%. Even after SE, these techniques were
still effective. These tendencies were similar to those of the
second CHiME challenge [11], [12].

B. DNN-based ASR systems

Table IV shows the average WER of DNN-based ASR
systems. The tendencies were similar to those in GMM-
based systems (VII-A). sMBR of DNN improved the WER
by 1–2% especially effective for “enh2”. fMLLR based model
adaptation improved the WER by 1–3% but SAT was less
effective (less than 1%). The BN feature was effective for Sim.
but ineffective for Real. The VTLN provided an additional
improvement on the Dev. set but worsened the WERs on Sim.
of the Eval. set. These ASR systems were combined (section
VII-C) or selected (section VII-D) because their performance
tendencies were different from environment to environment.

C. ASR system combination

Table V (C) shows the results of two, three, or six system
combinations. Increasing the number of systems did not nec-
essarily lead to the performance improvement because the best
performing systems were different as shown in Table IV. For
Dev. set, certainly, six system combination was the best for
Sim. but for Real, three system combination was the best.
For the reference, table also shows the WER of the best
(B in the table) or the worst single system (W) from six
systems. All systems were better than the worst system and
some systems outperformed the best single system. This shows
the effectiveness of system combination in exchange for the
increase of computational resources. Rescoring with RNN-
LM improved the WER further by 1–2%. Considering longer
context than n-gram model was effective.



TABLE IV
AVERAGE WER [%] ON THE DEVELOPMENT AND EVALUATION SET OF THE THIRD CHIME CHALLENGE USING DNN ACOUSTIC MODELS.

BN VTLN fMLLR SAT sMBR RNN-LM Dev. set Eval. set
Real Sim. Real Sim.

no
is

y

15.58 13.51 29.21 18.41
✓ 14.41 12.62 28.49 16.90

✓ ✓ 12.11 11.40 22.74 13.57
✓ ✓ ✓ 12.05 11.16 22.25 13.95

✓ ✓ ✓ ✓ 12.31 10.75 22.91 12.67
en

h1

17.64 7.44 32.03 9.04
✓ 16.51 7.01 30.84 8.26

✓ ✓ ✓ 13.65 6.04 24.32 7.04 1-a
✓ ✓ ✓ ✓ 14.42 5.92 26.17 6.33 1-b

✓ ✓ ✓ ✓ 13.11 5.90 20.22 12.45 1-c
✓ ✓ ✓ ✓ 11.88 4.65 21.66 5.22

✓ ✓ ✓ ✓ ✓ 12.78 4.41 24.11 4.75
✓ ✓ ✓ ✓ ✓ 11.36 4.57 17.93 10.23

en
h2

12.83 9.38 25.94 14.57
✓ 11.36 8.39 22.41 12.84

✓ ✓ ✓ 9.03 7.08 16.98 10.45 2-a
✓ ✓ ✓ ✓ 9.67 6.89 17.74 9.99 2-b

✓ ✓ ✓ ✓ 13.97 6.11 20.02 13.69 2-c
✓ ✓ ✓ ✓ 7.39 5.69 14.79 8.65

✓ ✓ ✓ ✓ ✓ 8.02 5.48 15.59 8.19
✓ ✓ ✓ ✓ ✓ 12.18 4.76 17.64 12.08

TABLE V
AVERAGE WER [%] ON THE DEVELOPMENT AND EVALUATION SET USING SYSTEM SELECTION (S) AND SYSTEM COMBINATION (C). FOR REFERENCE,

THE BEST SYSTEM (B) AND THE WORST SYSTEM (W) WERE PICKED UP. ADDITIONALLY, RESCORING WITH RNN-LM WAS PERFORMED.

Type # of systems Target systems RNN-LM Dev. set Eval. set
1-a 1-b 1-c 2-a 2-b 2-c Real Sim. Real Sim.

B 1 from 6 ✓ ✓ ✓ ✓ ✓ ✓ 9.03 5.90 16.98 6.33
W 1 from 6 ✓ ✓ ✓ ✓ ✓ ✓ 14.42 7.08 26.17 13.69
C 2 ✓ ✓ 8.71 5.86 16.38 7.08
C 3 ✓ ✓ ✓ 12.73 5.51 19.59 6.28
C 3 ✓ ✓ ✓ 8.23 5.73 16.31 9.78
C 6 ✓ ✓ ✓ ✓ ✓ ✓ 10.02 5.27 15.67 7.42
S 1 from 2 ✓ ✓ 10.10 6.81 19.72 9.89
S 1 from 3 ✓ ✓ ✓ 14.24 5.98 25.67 7.35
S 1 from 3 ✓ ✓ ✓ 10.45 6.70 18.52 10.60
S 1 from 6 ✓ ✓ ✓ ✓ ✓ ✓ 11.36 6.52 20.60 9.28
B 1 from 6 ✓ ✓ ✓ ✓ ✓ ✓ ✓ 7.39 4.41 14.79 4.75
W 1 from 6 ✓ ✓ ✓ ✓ ✓ ✓ ✓ 12.78 5.69 24.11 12.08
C 2 ✓ ✓ ✓ 7.52 4.59 14.61 5.72
C 3 ✓ ✓ ✓ ✓ 11.09 4.15 17.61 4.82
C 3 ✓ ✓ ✓ ✓ 6.66 4.54 14.15 8.39
C 6 ✓ ✓ ✓ ✓ ✓ ✓ ✓ 8.70 3.93 13.74 5.97
S 1 from 2 ✓ ✓ ✓ 8.49 5.39 17.45 8.10
S 1 from 3 ✓ ✓ ✓ ✓ 12.49 4.55 23.06 5.49
S 1 from 3 ✓ ✓ ✓ ✓ 8.64 5.28 16.41 8.83
S 1 from 6 ✓ ✓ ✓ ✓ ✓ ✓ ✓ 9.57 5.14 18.49 7.92

D. Optimal ASR system selection

Our proposed method based on i-vectors selected the op-
timal single system from a combination of two types of SE
methods and three types of feature transformations. Table V
(S) shows the results. For Real, “enh1” tended to be picked
up and for Sim. “enh2” tended to be picked up. All system
selections were better than the worst system. This shows the
effectiveness of the proposed method, because the proposed
method aims to pick up the best system. The average dif-
ferences between the best system –upper limit of a single
system ASR– and the proposed system were 0.58% for Dev.
set and 1.28% for Eval. set. In total, the worst WER of the
selected system for either Real or Sim. was better than that

of each single system. Tendencies were the same to the case
of rescoring with RNN-LM. The average differences between
the best system and the proposed system were 0.62% for
Dev. set and 1.18% for Eval. set. The performance differences
were larger for Eval. set than for Dev. set because Eval. set
had larger mismatches between training and test data and the
performance was worse.

VIII. CONCLUSION AND FUTURE WORK

This paper proposed an efficient optimal system selection
method that estimates WERs of a test utterance based on
the i-vector similarities when there are multiple ASR systems
and their suitable environments are different. The proposed
system selection can improve the worst performance for single



systems by picking up better hypotheses. The experiments on
the third CHiME challenge showed that the average differences
between the best WER of the single system and that of the
selected system were around 0.6% for the development set and
0.9% for the evaluation set. This shows the effectiveness of
our proposed method. Our method does not increase the com-
putational resources, although system combination improved
the performance further but it increases the computational
resources in proportion to the number of combined ASR
systems. Future work will be a precise estimation of WER
by using data clustering or an average of WERs of the N-best
results.
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bottle-neck features for LVCSR of meetings,” in Proceedings of ICASSP,
2007, vol. 4, pp. 757–760.

[29] D. Yu and M.L. Seltzer, “Improved bottleneck features using pretrained
deep neural networks,” in Proceedings of INTERSPEECH, 2011, pp.
237–240.

[30] E. Eide and H. Gish, “A parametric approach to vocal tract length
normalization,” in Proceedings of ICASSP, 1996, vol. 1, pp. 346–3483.

[31] S. Umesh, A. Zolnay, and H. Ney, “Implementing frequency-warping
and VTLN through linear transformation of conventional MFCC,” in
Prodeedings of INTERSPEECH, 2005, pp. 269–272.

[32] S. Panchapagesan and A. Alwan, “Frequency warping for VTLN
and speaker adaptation by linear transformation of standard MFCC,”
Computer Speech and Language, vol. 23, no. 1, pp. 42–64, 1 2009.

[33] H. Hermansky, D.P.W. Ellis, and S. Sharma, “Tandem connectionist
feature extraction for conventional HMM systems,” in Proceedings of
ICASSP, 2000.
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