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Abstract—Feature-space maximum-likelihood linear regression
(fMLLR) transforms acoustic features to adapted ones by a
multiplication operation with a single transformation matrix.
This property realizes an efficient adaptation performed within a
pre-precessing, which is independent of a decoding process, and
this type of adaptation can be applied to deep neural network
(DNN). On the other hand, constrained MLLR (CMLLR) uses
multiple transformation matrices based on a regression tree,
which provides further improvement from fMLLR. However,
there are two problems in the model-space adaptations: first,
these types of adaptation cannot be applied to DNN because
adaptation and decoding must share the same generative model,
i.e. Gaussian mixture model (GMM). Second, transformation
matrices tend to be overly fit when the amount of adaptation
data is small. This paper proposes to use multiple transformation
matrices within a feature-space adaptation framework. The pro-
posed method first estimates multiple transformation matrices in
the GMM framework according to the first-pass decoding results
and the alignments, and then takes a weighted sum of these
matrices to obtain a single feature transformation matrix frame-
by-frame. In addition, to address the second problem, we propose
feature-space structural maximum a posteriori linear regression
(fSMAPLR), which introduces hierarchal prior distributions to
regularize the MAP estimation. Experimental results show that
the proposed fSMAPLR outperformed fMLLR.

I. INTRODUCTION

Adaptation is an effective technique for automatic speech
recognition (ASR) especially when a mismatch of acoustic
features exists between training and decoding [1], [2]. Adap-
tation techniques are classified into model-space adaptations
and feature-space adaptations. Model-space adaptations, such
as maximum-likelihood linear regression (MLLR) [3], [4], [5],
have been developed within the classical Gaussian mixture
model (GMM) framework. In MLLR, multiple transformation
matrices are estimated based on a regression tree technique,
and Gaussian means in hidden Markov models (HMMs) are
adapted using these transformations more precisely than a
single transformation. However, the multiple transformation
matrices tend to be over-estimated when the amount of
adaptation data is small. To avoid this problem, researchers
have proposed structural Bayesian approaches [6], [7], [8].
Structural maximum a posteriori linear regression (SMAPLR)
is an extension of MLLR, and it introduces hierarchal prior

distributions in the regression tree representation to regularize
the maximum a posteriori (MAP) estimation of the transfor-
mation matrix. Similar to the extension of MLLR to con-
strained MLLR (CMLLR [9]), SMAPLR is also extended as
constrained SMAPLR (CSMAPLR [10]). CSMAPLR achieves
more robust performance than both CMLLR and SMAPLR.
However, it is difficult to apply these model-space adaptation
techniques to the other acoustic models than the GMM because
model-space adaptations with multiple transformation matrices
is tightly integrated with the GMM.

On the other hands, feature-space adaptations can be applied
to any acoustic models because the adaptation is performed in
an adaptation module, which it is independent of a decoding
module. For example, feature-space MLLR (fMLLR) trans-
forms acoustic features into adapted ones by a multiplication
operation with a single transformation matrix in an adaptation
module. Other studies related to fMLLR, fMAPLR [11], and
fMAPLIN [12] have been proposed to improve the robustness
of the transformation matrix estimation when the amount of
adaptation data is small.

This type of adaptation can be easily applied to deep
neural network (DNN) and other deep network architectures,
where adapted features are inputted to DNN based acoustic
models [13]. In addition, as an example of incorporating
fMLLR to a DNN architecture, the linear input network (LIN)
[14], [15], [16] was also proposed, which imitates this linear
feature transformation by adding a layer without a non-linear
activation function to the bottom of the DNN. Other study
proposed to insert a linear transformation layer to other layers
[17]. These approaches can easily adapt neural networks in
the training time but in the testing time it is difficult to adapt
a linear layer robustly because there are many parameters and
the incorrect alignments degrade the accuracy of the parameter
estimation significantly.

However, the performance may be worse than that of the
model-space adaptation because this adaptation only uses a
single transformation matrix and it cannot represent the com-
plicated acoustic mismatch precisely. To exploit the advantages
of model- and feature-space adaptations, our method uses
multiple transformation matrices in the feature-space adap-
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tation. After the first-pass decoding, we obtain the multiple
transformation matrices based on the GMM-based adaptation
framework. Then, we estimate a single transformation matrix
by a weighted sum of these transformation matrices at the
second-pass decoding. This process increases little computa-
tional cost from fMLLR. These weights are estimated frame-
by-frame based on the HMM state alignments obtained from
the first-pass decoding. In addition, to avoid over-fitting in
the estimation of transformation matrices, structural maximum
a posteriori (SMAP) criterion is adopted for our feature-
space technique. This method is an extension of CSMAPLR,
the feature-space SMAPLR (fSMAPLR). Experimental results
show that the proposed fSMAPLR outperforms fMLLR for
both GMM and DNN acoustic models in the feature-space
adaptation.

This paper first describes the conventional adaptation tech-
niques including model- and feature-space adaptations in
Section II and proposes the feature-space adaptation method
with multiple transformation matrices in Section III. Finally,
experiments in Section IV show the effectiveness of our
proposed method.

II. CONVENTIONAL ADAPTATION TECHNIQUES

This section describes conventional adaptation techniques.
The first two ones (II-A and II-B) are model-space adaptation.
The CMLLR (II-A) is the most widely used model-space
adaptation. This method can construct multiple transformation
matrices based on regression tree. Because the CMLLR tends
to be overly tuned for adaptation data, SMAP criterion is
introduced to CMLLR (II-B). The last one (II-C) is a feature-
space adaptation. The CMLLR with a single transformation
matrix is equivalent to transforming feature vectors in feature
space, which is called as the fMLLR.

A. CMLLR

In CMLLR, the D-dimensional mean vector µjm ∈ RD

and diagonal covariance matrix Σjm ∈ RD×D of the Gaussian
distribution are transformed into the adapted mean vector µ̂jm

and covariance matrix Σ̂jm by Eqs. (1) and (2) where j and m
be the HMM state and GMM component index, respectively.

µ̂jm = Θr(m,j)µjm + εr(m,j), (1)

Σ̂jm = Θr(m,j)ΣjmΘ>
r(m,j). (2)

Here, r represents the regression class index and is uniquely
specified from both m and j, and this structure is obtained
by a regression tree-based method [5]; Θr(m,j) ∈ RD×D and
εr(m,j) ∈ RD represent the transformation matrix and the bias
vector, respectively. If the diagonal covariance matrix Σjm is
transformed with Eq. (2), Σ̂jm becomes full covariance. Then
the cost of likelihood computation and the size of acoustic
model will extremely increase. However, the full-covariance
Gaussian likelihood of the t-th frame D-dimensional feature
vector ot ∈ RD at the state j and component m can be
rewritten with the diagonal-covariance Gaussian likelihood, as

Fig. 1. Overview of model-space adaptation methods.

follows:

Ljm(ot) = N (ot|µ̂jm, Σ̂jm) (3)

=
∣∣Ar(m,j)

∣∣N (ôr(m,j),t|µjm,Σjm), (4)

where N denotes a Gaussian distribution. The transformation
matrix Ar(m,j), the bias vector br(m,j), and the transformed
feature ôr(m,j),t are defined as follows:

Ar(m,j) , Θ−1
r(m,j), (5)

br(m,j) , −Θ−1
r(m,j)εr(m,j), (6)

ôr(m,j),t , Ar(m,j)ot + br(m,j) = W r(m,j)

[
ot

1

]
. (7)

Thus, the use of Eq. (4) instead of Eq. (3), can avoid the
full-covariance issues. However, this trick is highly depending
on the Gaussian based likelihood calculation (e.g., the affine
transformation W r(m,j) of features depends on the state j
and Gaussian indexes m), and cannot be used for the DNN-
based score calculation. Fig. 1 shows the overview of model-
space adaptation methods. In this types of adaptation, because
adaptation and decoding processes are coupled, their processes
must share the same acoustic model. Another issue of CMLLR
is over-fitting in the case of the small amount of adaptation
data.

B. CMLLR with structural priors (CSMAPLR)

The over-fitting issues of CMLLR can be mitigated by
using a Bayesian approach. CSMAPLR [10] estimates a set of
transformation matrices W̄ , {W̄ r}R

r=1 with a MAP criterion
as follows

W̄ = argmax
W

P (W) P (O|λ,W) , (8)

where O = {ot|t = 1, . . . , T} and λ represent the feature
sequence and the set of GMM model parameters, respectively.
We use a hierarchical prior distribution for P (W). For ex-
ample, CSMAPLR uses the following prior distribution for
P (W r):
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Fig. 2. Overview of feature-space adaptation methods.

P (W r) ∝ |Ω|−D/2 |Ψ|−(D+1)/2

× exp
{
−1

2
tr

(
W r − W pa(r)

)>
Ω−1

(
W r − W pa(r)

)
Ψ−1

}
,

(9)

where pa(r) represents the regression class index of the parent
node of r, and Ω ∈ RD×D and Ψ ∈ R(D+1)×(D+1) are
hyper parameters for the prior distribution. In this study, we
used the same settings as in [7], [10], i.e. Ω = τID and
Ψ = ID+1 where τ is a scaling parameter for SMAP (SMAP
scale), which is a positive constant to control the effect of
the prior distribution in the MAP estimation. When τ = 0,
it corresponds to the CMLLR with multiple transformation
matrices.

C. fMLLR

In Section II-A, if we use a single transformation matrix
instead of multiple ones, we can omit the regression index r,
and further rewrite Eq. (4) as follows:

Ljm(ot) = |A| N (ôt|µjm,Σjm), (10)

where ô is a transformed feature defined as:

ôt , Aot + b = W

[
ot

1

]
. (11)

Thus, we can obtain adapted features from an adaptation
module, which is separated from a decoding module as shown
in Fig. 2. This type of feature-space adaptation technique such
as fMLLR has been widely used. However, the performance
may be worse than that of the model-space adaptation because
this adaptation only uses a single transformation matrix.

III. FEATURE TRANSFORMATION WITH MULTIPLE
TRANSFORMATION MATRICES IN FEATURE SPACE

A. General form of weighting multiple transformation matri-
ces

Fig. 3 shows an outline of the proposed method. This
figure describes the application of five CMLLR transformation

Fig. 3. Outline of the proposed method.

Fig. 4. Concrete example of the proposed feature transformation where the
component of the state st includes five Gaussian distributions (N1, . . . ,N5,
{1, 2, 3, 4, 5}∈ Mst ) and W A and W B are transformation matrices. Dis-
tributions 1,2, and 3 share W A and distributions 4 and 5 share W B . Their
weight parameters are ρ (1, st, ot) , . . . , and ρ (5, st, ot).

matrices to acoustic features when the input utterance is “aki”.
We associate acoustic features with transformation matrices
frame-by-frame via state alignments to follow the temporal
changes of acoustic features. To realize this association, we
employ a state alignment1, which is obtained by a GMM based
acoustic model. In Fig. 3, the alignment is represented as the
state index sequence for the HMM, i.e., S = {st|t = 1, . . . T},
where T denotes the number of frames. With obtained st,
we can specify a set of Gaussian components in a GMM
as Mst and multiple regression classes {r (m, st)}m∈Mst

.
Therefore, we can associate the acoustic feature ot with
multiple transformation matrices

{
W r(m,st)

}
m∈Mst

.
As discussed in Section II-A, model-space adaptations

compute the output probability for each Gaussian component
using a corresponding transformation matrix. However, it is
necessary to avoid Gaussian-specific computation for applying
it to the DNN, which can be performed by converting the

1It is also possible to use lattices or N-best recognized hypotheses instead of
alignments, because both of them can associate acoustic features with multiple
HMM states existing in a certain frame.
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Algorithm 1 The proposed feature transformation algorithm.
Input: Acoustic feature sequence O = {ot|t = 1, . . . , T} and

GMM acoustic model parameters λ
Obtain state sequence S = {st|t = 1, . . . T} at the first-pass
decoding (S = decode (O))
Estimate transformation matrices W̄ by Eq. (8)
for t = 1, · · · , T do

for m ∈ Mst do
ôt =

∑
m∈Mst

ρ (m, st,ot)
(
Ar(m,st)ot + br(m,st)

)
=

∑
m∈Mst

ρ (m, st, ot) W r(m,st)

[
ot

1

]
end for

end for
Second-pass decoding with Ô = {ôt|t = 1, . . . , T}
(GMM/DNN)

transformation in the model-space adaptation W r to that in
the feature-space adaptation W . To achieve this, our proposed
method estimates a single transformation matrix by a weighted
sum of these matrices W r. Unlike Eq. (11), the transformed
feature vector at the t-th frame is represented as

ôt =
∑

m∈Mst

ρ (m, st, ot)
(
Ar(m,st)ot + br(m,st)

)
=

∑
m∈Mst

ρ (m, st, ot) W r(m,st)

[
ot

1

]
, (12)

where ρ (m, st, ot) represents a frame-dependent weight pa-
rameter associated with both the state st and the m-th mixture
of the GMM, which will be discussed in Section III-B. Fig. 4
shows a concrete example of the proposed feature transforma-
tion. A GMM component of the state st is composed of five
Gaussian distributions (N1, . . . ,N5). Distributions 1, 2, and 3
share W A and distributions 4 and 5 share W B . Once their
weight parameters ρ are fixed, transformed features can be
obtained by using a weighted sum of five transformed features
corresponding to each Gaussian distribution. This adaptation
can be performed in the feature-space, thus we can use the
precise feature transformation for DNN, as well as GMM.

Algorithm 1 describes the proposed fSMAPLR procedure.
We first obtain recognized hypotheses for the whole adaptation
data and the context-dependent state alignments S from the
first-pass decoding. Then, we estimate transformation matrices
W̄ based on the CSMAPLR by Eq. (8). To adjust the influence
of the prior distributions, we also introduce the SMAP scale
τ as same as the CSMAPLR. When a single transformation
matrix is used with τ = 0, this method is equivalent to fMLLR.
After W̄ is estimated, W̄ transforms the original feature ot

into the adapted feature ôt with Eq. (12). Finally, the second-
pass decoding obtains the ASR results with ôt by using either
GMM or DNN acoustic models.

B. Two types of weight parameters

In Section III-A, we described a method to obtain the
transformed feature ôt by using a weighted feature transfor-

mation matrix. In this section, we propose two types of weight
parameters.

The first one uses the posterior of the m-th GMM com-
ponent γ (m, st, ot) for the weight ρ (m, st, ot). Because the
state st is known from the first-pass decoding, the weight
parameter ρ (m, st, ot) can be computed from γ (m, st, ot):

ρ (m, st, ot) = γ (m, st, ot)

=
w (m, st)N

(
ot|µm,st

,Σm,st

)∑
m′∈Mst

w (m′, st)N
(
ot|µm′,st

,Σm′,st

) ,

(13)

where µm,st
and Σm,st

are the non-adapted mean vector
and diagonal covariance matrix, respectively2. However, it is
well known that a few mixture components are very dominant
over all components, and the posterior distribution tends to
be very sparse. As a result, a single transformation matrix is
selected with Eq. (13), and multiple transformation extension
in Eq. (12) cannot be fully utilized.

The second one uses the mixture weight of the GMM
as a weight for each transformation matrix. The motivation
of this approach is to avoid the sparseness of γ (m, st, ot).
This can be approximated from Eq. (13) by ignoring
N

(
ot|µm,st

,Σm,st

)
, as follows3:

ρ (m, st, ot) = γ (m, st,ot)

∼=
w (m, st)∑

m′∈Mst
w (m′, st)

= w (m, st) , (14)

where w (m, st) is different frame-by-frame because st de-
pends on frame t. Note that m is also dependent on st

(m ∈ Mst). This enables our method to estimate transfor-
mation matrices more accurately than those using Eq. (13)
because the estimation using Eq. (14) is more stable under
noisy conditions.

IV. EXPERIMENTS

A. Setups

We validated the effectiveness of our proposed approach
for noisy “isolated” speech4 using Track 2 from the second
CHiME challenge [21]. This is a medium-vocabulary task
in reverberant and noisy environments, whose utterances are
taken from the Wall Street Journal database. The “isolated”
speech was created by adding real-world noises recorded
in the same room to reverberated speech at a −6, −3, 0,
3, 6, and 9 dB signal-to-noise ratio (SNR). The training
dataset (si tr s) contains 7,138 utterances (15 [hour]) by 83
speakers (si84). Acoustic models (GMM and DNN) were

2Eq. (12) with (13) becomes very similar to discriminative feature trans-
formation [18], [19], [20]. However these techniques are performed within a
GMM discriminative training framework, and it is different from our approach,
which focuses on feature-space adaptation for both GMM and DNN.

3The transformed features calculated from Eq. (14) may lead to the
discontinuity of the transformed acoustic features because the transformation
matrix is the same during the same st and at the changing point of the state,
transformation matrices can be changed more drastically than those calculated
from Eq. (13).

4There are two types of noisy speech: “isolated” and “embedded”.
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constructed with st tr s. The performance was evaluated
on both the evaluation dataset (si et 05), which contains
330 utterances (0.67[hour/SNR]×6[SNR]) by 12 speakers
(Nov’92), and the development set (si dt 05), which contains
409 utterances (0.77[hour/SNR]×6[SNR]) by 10 speakers. All
utterances from each speaker (approximately 4–5min) were
used for adaptation and evaluation. The added noises were
non-stationary, such as the utterances of other speakers, home
noises, or music. In addition, we suppressed noise by using
prior-based binary masking [22] as a front-end processing.
The tri-gram language model size was 5 k (basic). Some of
the tuning parameters (e.g., the language-model weights and
the number of transformation matrices) were optimized on the
word-error rates (WERs) for si dt 05.

We prepared two types of acoustic feature settings. The first
setting was MFCC with feature transformations. After concate-
nating 0-12th order static MFCCs in nine contiguous frames,
a total of 117 dimensional features were compressed into
40 dimensions by linear discriminant analysis (LDA) [23]5.
Then, a global semi-tied covariance (STC) [24] was applied to
the LDA-transformed features in order to decorrelate between
dimensions. After feature transformations with LDA and STC,
the speaker-adaptive training [25] was used. The second setting
was filter-bank (fbank) features with decorrelation. It starts
from 0-22th order fbank features with ∆ and ∆∆. Fbank
features cannot be represented well by a diagonal covariance
model, thus GMM cannot model fbank features [26]. From
this limitation, fMLLR with fbank features did not improve the
ASR performance [27] and it is necessary to decorrelate fbank
features before adaptation. In adaptation phase, a global STC
H was applied to fbank features in order to decorrelate them,
whereas in decoding phase, we applied an inverse STC H−1

to decorrelated and adapted (fMLLR/fSMAPLR) features in
the same manner as [26].

The tri-phone GMM has 2,500 states and 15,000 Gaussian
distributions. The DNN acoustic model has three hidden layers
and 500,000 parameters. The initial learning rate of cross-
entropy training was 0.02 and was decreased to 0.004 at the
end of training. The mini-batch size was 128. Acoustic model
training and decoding used the Kaldi toolkit [28] and the
training procedure of acoustic models are the same as [22].

B. Appropriate weight parameters for the transformation ma-
trices

Before comparing the proposed method with the conven-
tional methods, we examined two types of weight parameters
for transformation matrices, as discussed in Section III-B.

Table I shows the average WER using five and ten trans-
formation matrices with both the posterior from Eq. (13) and
the mixture weight from Eq. (14). The SMAP scale τ was set
to 0, 100 and 1,000. These results show that mixture weights
were better than posteriors in all cases because posteriors were
sparse among their mixtures, as discussed in Section III-B.
The optimized number of transformation matrices and τ will

5Delta features were not used for LDA.

TABLE I
WER (%) FOR THE DEVELOPMENT SET OF THE TRACK 2 OF THE SECOND

CHIME CHALLENGE WHEN EITHER A POSTERIOR (EQ. (13)) OR A
MIXTURE WEIGHT (EQ. (14)) WAS USED FOR THE WEIGHT IN EQ. (12).

GMM ACOUSTIC MODEL WITH MFCC FEATURES WAS USED.

the number of τ (SMAP scale)
transformation matrices weight 0 100 1000

5 posterior (Eq. (13)) 39.7 39.6 39.3
mixture weight (Eq. (14)) 39.5 39.5 39.2

10 posterior (Eq. (13)) 40.8 40.5 39.8
mixture weight (Eq. (14)) 40.4 40.2 39.7

39.0

39.5

40.0

40.5

41.0

41.5

42.0

1 2 4 8 16

A
ve

ra
g

e
 W

E
R

[%
]

Number of transformation matrices
fMLLR

fSMAPLR τ=0 

fSMAPLR τ=1

fSMAPLR τ=10

fSMAPLR τ=100

fSMAPLR τ=1000

Fig. 5. Average WER (%) for isolated speech (si dt 05) with the GMM
acoustic model with MFCC features. Parametric study of the SMAP scale
τ and the number of transformation matrices.

be discussed in more detail in Section IV-C and IV-D. The
proposed fSMAPLR used the mixture weight (Eq. (14)) below.

C. GMM acoustic model

Fig. 5 shows the average WER over all SNRs. The proposed
fSMAPLR transforms the acoustic features frame-by-frame
based on Eq. (12), using the multiple transformation matrices
obtained by Eq. (8). The SMAP scale τ was set to 0, 1,
10, 100, and 1,000. The number of transformation matrices
was 3, 5, 10, and 20. The proposed method with three or
five transformation matrices outperformed fMLLR, for all τ ’s.
When the proposed method used 10 and more transformation
matrices, its performance degraded because the transformation
matrices can be overly fit for the child nodes which contain
only a small amount of data. However, increasing τ prevented
over-fitting even if the number of transformation matrices
increased. It confirmed the effectiveness of the proposed
fSMAPLR. Based on these results, the optimal number of
transformation matrices and τ for GMM were 5 and 1,000,
respectively.

Table II shows the performance comparison on the evalu-
ation set (si et 05). This shows the WER for each SNR and
their average denoted by “avg.”. For reference, CSMAPLR
was evaluated to show the performance of a model-space
adaptation technique using multiple transformation matrices.
We compared the fSMAPLR with the unadapted (w/o adapta-
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TABLE II
WER (%) FOR ISOLATED SPEECH (SI ET 05) WITH THE GMM ACOUSTIC
MODEL USING MFCC FEATURES IN TERMS OF SNR. “W/O ADAPTATION”

DENOTES THE BASELINE WITHOUT ADAPTATION.

SNR [dB]
Method -6 -3 0 3 6 9 avg.

w/o adaptation 62.7 54.7 48.0 40.6 35.4 31.8 45.5
fMLLR 54.3 45.7 36.9 28.5 23.6 20.1 34.8

fSMAPLR 52.9∗ 44.7∗ 35.2∗ 27.3∗ 22.5∗ 18.7∗ 33.6∗
CSMAPLR 52.7 43.7 35.5 27.4 22.5 19.1 33.5

* significant at the 0.05 level.

33.5

34.0

34.5

35.0

35.5

36.0

36.5

37.0

37.5

38.0

1 2 4 8 16

A
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g

e
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E
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[%
]

Number of transformation matrices
fMLLR

fSMAPLR τ=0 

fSMAPLR τ=1

fSMAPLR τ=10

fSMAPLR τ=100

fSMAPLR τ=1000

Fig. 6. Average WER (%) for isolated speech (si dt 05) with the DNN
acoustic model with MFCC features.

tion), fMLLR, and CSMAPLR. These results show that the
adaptation was effective and that the proposed fSMAPLR
outperformed fMLLR in all SNR cases and improved the
average WER by 1.2%. Statistical hypothesis testing confirmed
the effectiveness of the fSMAPLR at the 0.05 level. The
performance of the fSMAPLR was comparable to that of the
CSMAPLR. This confirmed the effectiveness of using multiple
transformation matrices in both the model- and feature-space.

D. DNN acoustic model with MFCC feature

In this section, we evaluate the performance with DNN
acoustic model. Fig. 6 shows the average WER for the
development set (si dt 05). The notations are the same as
Fig. 5. These results show that the fSMAPLR with three trans-
formation matrices outperformed fMLLR. As the number of
transformation matrices increased too much, the performance
of fSMAPLR degraded in the same manner as the GMM cases.
Based on these results, the optimal number of transformation
matrices and τ were 3 and 1,000, respectively.

Table III shows the performance of the proposed method
on the evaluation set (si et 05) and compared the fSMAPLR
with the unadapted (w/o adaptation) and fMLLR. Note that
the CSMAPLR cannot be realized with a DNN as described
in the introduction. When compared with Table II, DNN
outperformed GMM in all cases. The results show that the
adaptation of DNN was still effective. Compared with fMLLR,
the proposed fSMAPLR improved the ASR performance for

TABLE III
WER (%) FOR ISOLATED SPEECH (SI ET 05) WITH THE DNN ACOUSTIC

MODEL USING MFCC FEATURES IN TERMS OF SNR.

SNR [dB]
Method -6 -3 0 3 6 9 avg.

w/o adaptation 56.3 47.0 39.3 32.7 29.3 26.1 38.5
fMLLR 47.0 37.4 29.5 22.0 18.4 15.4 28.3

fSMAPLR 46.6 36.4 29.2 21.6 17.2∗ 15.0∗ 27.6∗
* significant at the 0.05 level.

TABLE IV
WER(%) FOR ISOLATED SPEECH (SI ET 05) WITH THE DNN ACOUSTIC

MODEL USING FBANK FEATURES IN TERMS OF SNR.

SNR [dB]
Method -6 -3 0 3 6 9 avg.

w/o adaptation 47.9 38.7 32.4 24.7 21.4 19.5 30.8
fMLLR 45.2 35.7 29.1 21.5 18.2 16.6 27.7

fSMAPLR 45.3 35.1 28.5 21.4 18.1 16.2∗ 27.4∗
* significant at the 0.05 level.

all SNR conditions and the average WER by 0.7%. The
significance was also confirmed by statistical hypotheses test-
ing. Experiments thus confirm that the proposed fSMAPLR
outperformed fMLLR for both GMM and DNN acoustic
models.

E. DNN acoustic model with the filter-bank feature

Table IV shows the WER for the fbank features. The per-
formance of DNN w/o adaptation was significantly improved
from the MFCC features. For adapted features, although the
gains were small, fMLLR and our proposed fSMAPLR im-
proved the performance further by 0.3%. This comparison also
shows that our proposed fSMAPLR outperformed fMLLR.
These experiments confirmed the robustness of the proposed
method for both MFCC and fbank features.

V. CONCLUSIONS

This paper proposed a feature-space adaptation using mul-
tiple transformation matrices based on a regression tree, and
introduced the SMAP criterion to avoid over-fitting in the
estimation of transformation matrices. This aims to improve
the performance of DNN because feature-space adaptations
are suitable for DNN. The experimental results with GMM
showed that the proposed method outperformed fMLLR, and
was comparable to the model-space CSMAPLR, despite the
fact that the proposed method was only applied to feature
transformation, which is separated from decoding process.
The computational time of the proposed method was almost
comparable to that of the conventional fMLLR. Furthermore,
adapted feature vectors by the proposed method can be in-
putted to DNN, which cannot be realized by the CSMAPLR,
and we confirmed that the proposed fSMAPLR outperformed
fMLLR for DNN in addition to GMM. Future work will seek
to derive optimal weight parameters, introduce VBLR [8],
[29] for estimating transformation matrices, and apply speaker
adaptive training to DNNs by using obtained transformation
matrices.
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