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Abstract
Speech enhancement is an important front-end technique to im-
prove automatic speech recognition (ASR) in noisy environ-
ments. However, the wrong noise suppression of speech en-
hancement often causes additional distortions in speech sig-
nals, which degrades the ASR performance. To compensate
the distortions, ASR needs to consider the uncertainty of en-
hanced features, which can be achieved by using the expecta-
tion of ASR decoding/training process with respect to the prob-
abilistic representation of input features. However, unlike the
Gaussian mixture model, it is difficult for Deep Neural Network
(DNN) to deal with this expectation analytically due to the non-
linear activations. This paper proposes efficient Monte-Carlo
approximation methods for this expectation calculation to real-
ize DNN based uncertainty decoding and training. It first mod-
els the uncertainty of input features with linear interpolation
between original and enhanced feature vectors with a random
interpolation coefficient. By sampling input features based on
this stochastic process in training, DNN can learn to generalize
the variations of enhanced features. Our method also samples
input features in decoding, and integrates multiple recognition
hypotheses obtained from the samples. Experiments on the re-
verberated noisy speech recognition tasks (the second CHiME
and REVERB challenges) show the effectiveness of our tech-
niques.
Index Terms: noise-robust speech recognition, deep neural net-
works, uncertainty training/decoding, stochastic process of en-
hanced features

1. Introduction
A deep neural network (DNN) improves the performance of
automatic speech recognition (ASR) [1]. We confirmed the
effectiveness of DNNs for noisy and reverberant ASR tasks
[2, 3]. On the other hand, several methods that were developed
for the Gaussian mixture model (GMM) have been applied to
DNNs. For example, feature-space maximum-likelihood linear
regression (fMLLR), an effective speaker-adaptation technique,
is widely used for as the DNN front-end [4]. This paper applies
uncertainty techniques to DNNs because uncertainty techniques
are successful examples in noisy ASR for GMM-based systems.

In noisy condition, speech enhancement improves the ASR
performance, even for a DNN-based systems [5, 6, 7]. However,
distortions are consequently introduced to the speech, and this
can degrade the ASR performance. This is problematic espe-
cially when noise conditions are mismatched between training
and decoding time, or when speech enhancement is only applied
during decoding, because mismatches of the acoustic model or
speech distortion significantly degrades ASR performance.

To address this problem, several methods have been pro-
posed to adjust features according to their reliabilities represent-
ing the distortion by speech enhancement. For the GMM, when
feature uncertainty can be represented as a Gaussian distribu-
tion, the GMM likelihoods are computed based on the expec-
tations with respect to these feature-uncertainty distributions.
The expectation is calculated analytically by integrating out
marginal parameters, and this marginalization renders models
more robust to speech distortions caused by speech enhance-
ment, and it is referred to as the uncertainty-decoding tech-
nique. As a result, covariance matrices for the Gaussian distri-
butions of the acoustic models for input features are adjusted
corresponding to the extent of uncertainties (i.e., reliability).
Many uncertainty methods have been proposed, and their ef-
fectiveness for the GMM has been demonstrated experimentally
[8, 9, 10, 11, 12, 13, 14]. For example, [10, 11] used a difference
vector between noisy and enhanced feature vectors, [12] used a
posterior variance of Wiener filters, and [15] used an estimate
based on a binary speech/noise predominance model. However,
because of an inclusion of non-linear activations in DNNs, it is
difficult to handle uncertainty propagations analytically.

This paper proposes uncertainty training and decoding
methods for DNNs. Unlike [16], which calculates the expecta-
tion operation approximately for the DNN score calculation and
for training of DNNs, our method samples some input features
based on uncertainties by using the Monte-Carlo method. How-
ever, because DNN model training requires considerable com-
putation, efficient sampling is essential. The proposed method
focuses on interpolation vectors before and after speech en-
hancement, and it efficiently represents the feature distribu-
tions of enhanced speech vectors by sampling interpolation co-
efficients probabilistically. In addition, sampling is also per-
formed for decoding, and multiple recognition hypotheses for
each sample are combined to further improve the performance.

2. DNN uncertainty training and decoding
The theory behind the uncertainty technique is based on the fol-
lowing conditional expectation operation:

E[f(y1:T )|x1:T ] �
∫

f(y1:T )p(y1:T |x1:T )dy1:T , (1)

where x1:T = {xt|t = 1, . . . , T} is a sequence of T noisy fea-
ture vector and y1:T is a sequence of T enhanced features. f()
denotes decoding (see Section 2.1) or training (see Section 2.2)
depending on the application of our target1. p(y1:T |x1:T ) is a

1Although f() has several options including an acoustic score func-
tion [17], this paper regards f() as an entire decoding process, which
returns output sequences.
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Figure 1: Noisy feature x and enhanced feature ŷ, and the sam-
pling of feature y based on an interpolation between them.

stochastic representation of an enhanced feature sequence with
its uncertainty (see Section 2.3).

2.1. DNN uncertainty decoding

We first focus on uncertainty decoding for DNNs with a hybrid
architecture that combines the hidden Markov model (HMM)
with the DNN. In this framework, f() in Eq. (1) is represented
by the following actual decoding process:

Ŵ = E

[
arg max

W
p(y1:T |HW )p(W )

∣∣∣∣x1:T

]
,

= E [Wy1:T |x1:T ] ,

(2)

where W is a word sequence andHW is a possible HMM state-
sequence given W . Wy1:T is a decoded word sequence given
input feature sequence y1:T . Note that some conventional un-
certainty techniques based on the GMM provide an analytical
solution to Eq. (2) by integrating out the expectation operations
for E[p(y1:T |HW )|x1:T ] with a Gaussian-based uncertainty for
p(y1:T |x1:T ) (see [17] for more details). However, DNN-based
acoustic models cannot obtain such analytical solutions, owing
to the presence of nonlinear activation functions; these models
require approximations [16, 18].

Rather than using approximations, we adopt a straightfor-
ward expectation from Eq. (2), based on a Monte-Carlo sam-
pling, and averaging out multiple outputs at the hypothesis level
rather than integrals. These outputs are obtained from decod-
ing processes with different feature samples. The disadvantage
to this approach is that it requires the ASR decoding compu-
tations for all samples, even though lattice re-scoring can de-
crease these computations. In addition, it is very difficult to
sample y1:T to fully cover a possible input feature space. In-
stead of directly considering the distribution of sequential input
feature p(y1:T |x1:T ), we assume a deterministic relationship
for the sampled input feature yt at the frame t based on a linear
interpolation between xt and ŷt as:

yt = ŷt + α(xt − ŷt) for t = 1, . . . , T, (3)

where α is a linear interpolation coefficient. The geometric
meaning of this linear interpolation is shown in Fig. 1. This ap-
proach is inspired by uncertainty decoding based on an approx-
imated observation distribution with the covariance matrix ob-
tained by the difference between noisy and enhanced features:
p(y1:T |x1:T ) ≈∏T

t=1N (yt|ŷt,
[
α(xt − ŷt)(xt − ŷt)

�]) in
[10, 11]. In fact, Eq. (3) can be regarded as a sigma point for
this distribution [19]. Then, we regard the linear interpolation
coefficient α as a random variable, and efficiently sample one-
dimensional α with a relatively small number of samples.

Thus, our proposed uncertainty decoding with N Monte

Carlo samples is represented from Eq. (2) as follows:

Ŵ = R
[{

Wyn
1:T

}N

n=1

]
,

yn
t = ŷt + αn(xt − ŷt) for t = 1, . . . , T, αn ∼ p(α),

(4)

where R [·] is performed by using a hypothesis-level integra-
tion, e.g., with Recognizer Output Voting Error Reduction
(ROVER) [20]. αn ∼ p(α) means that the n-th α is sampled
from the distribution p(α). Section 2.3 discusses p(α) in more
detail.

2.2. DNN uncertainty training

In a manner similar to the description in Section 2.1, uncer-
tainty training, given a reference word sequence W , can be rep-
resented by replacing f() in Eq. (1) with a training procedure:

Θ̂ = E

[
arg min

Θ
FΘ(y1:T ,W )

∣∣∣∣x1:T

]
, (5)

where FΘ is an objective function of the DNN, e.g., cross en-
tropy (CE) or sequence-discriminative criteria, with the model
parameter Θ.

The input features are sampled based on the distribution of
a linear interpolation coefficient p(α) similarly to the proposed
uncertainty decoding in Section 2.1. Instead of the expectation
operation with respect to parameters in Eq. (5), we propose to
use a Monte Carlo sampling for an objective function

Θ̂ = arg min
Θ

E [FΘ(y1:T ,W )|x1:T ] ,

≈ arg min
Θ

N∑
n=1

FΘ(y
n
1:T ,W ),

where yn
t = ŷt + αn(xt − ŷt)∀t, αn ∼ p(α).

(6)

For CE training, the objective function with the Monte Carlo
sampling is represented as follows:

N∑
n=1

FCE
Θ (yn

1:T ,W ) = −
T∑

t=1

N∑
n=1

log pΘ(st|yn
t ), (7)

where st is an HMM state at the frame t, obtained by the Viterbi
alignment given W . Thus, the additivity to the objective func-
tion enables the expectation operation, simply by using the sam-
pled training data as input features. This approach can also
be applied to sequence-discriminative DNN training, e.g., [21].
The proposed approach is motivated by a deep learning method,
which has recently been used in the area of image processing
[22, 23] to train DNN models by sampling input features based
on possible feature changes. Such an approach renders models
robust and invariant to these changes.

2.3. Stochastic process for the linear-interpolation coeffi-
cient

We sample multiple α’s for each utterance by using the follow-
ing one-dimensional Gaussian mixture with K mixture compo-
nents to sample α:

p(α) =
K∑

k=1

wkN (α|μk, σ), (8)

where the mean μk is empirically determined from some values
in [0, 1], so that the input feature yt is sampled between the
noisy feature xt and the enhanced feature ŷt. The variance
σ and the mixture weight wk(= 1/K) are fixed, and in some
experiments α ∈ {μk}Kk=1 are fixed, i.e., σ → 0.
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3. Experimental setup
We validated the effectiveness of our proposed approaches with
two noisy and reverberated ASR tasks. The first corpus was the
second CHiME challenge Track 2 [24], which is a medium-
vocabulary task whose speech utterances are taken from the
Wall Street Journal (WSJ) database with non-stationary noise
between a −6 and 9 dB signal-to-noise ratio (SNR). The
multi-channel non-negative matrix factorization (MNMF) algo-
rithm [25, 26] was used for speech enhancement.

The second corpus was the REVERB challenge [27] sim-
ulation data, which is a medium-vocabulary task in reverber-
ant environments, whose utterances are also taken from the
WSJ [28]. Speech data were created by convolving clean speech
with six types of room impulse responses at a distance of 0.5 m
(near) or 2 m (far) from the microphones in three rooms (1–3)
whose reverberation times were 0.25, 0.5, and 0.75 s, respec-
tively, and by adding relatively stationary noise at 20 dB SNR.
Eight microphones were arranged in a circle with a radius of
0.1 m. Multi-channel beamforming with direction-of-arrival es-
timation and a single-channel dereveberation were applied [3].

The ASR settings were the same for both tasks. Some tun-
ing parameters, e.g., language model weights, were optimized
based on the word error rate (WER) of the development set. The
vocabulary size was 5k and a trigram language model was used.
These systems were constructed using the Kaldi toolkit [29].
Further details are found in [2, 3]. The learning rates were re-
duced for the proposed uncertainty-training method, because
the interpolated training data were similar to the original data
and acoustic models tend to be overly tuned. We used 40-
dimensional filter bank features with Δ and ΔΔ. The DNN
acoustic models were constructed according to the CE criterion
before performing sequential minimum Bayes risk (SMBR) dis-
criminative training [21].

The following six system types were prepared.

1. noisy: decoding x (trained on x)

2. enhan (enhanced): decoding ŷ (trained on y)

3. diff (difference): decoding
[
ŷ�, [x− ŷ]�

]�
4. uncert(t) (uncertainty training): decoding ŷ, whereas

models were trained on ŷ + α[x − ŷ] with μk ∈
{0, 0.1, 0.2}.

5. uncert(d) (uncertainty decoding): decoding ŷ+α[x−ŷ]
with μk ∈ {0, 0.1, 0.2}, whereas models were trained
on ŷ. Their hypotheses were combined using ROVER.

6. uncert(t,d) (combination of uncertainty training and de-
coding): decoding ŷ+α[x−ŷ] with μk ∈ {0, 0.1, 0.2},
and models were trained with the same features. Their
hypotheses were also combined using ROVER.

4. Result and discussion
4.1. The second CHiME challenge: Track 2

Table 1 shows the WER from the second CHiME challenge de-
velopment set. Speech enhancement by MNMF significantly
improved the ASR performance of the DNN system. Concate-
nating difference features (“diff” in table, this is motivated by
[10, 11] but it simply stacks uncertainty observations) to input
features reduced the WER for the CE model by 0.23%, and by
0.31% for the SMBR (discriminatively trained) model. This
experiment used fixed α’s, i.e., α ∈ {0, 0.1, 0.2} (σ → 0 in
Eq. (8)). The proposed uncertainty decoding (“uncert(d)” in the

Table 1: WER [%] on the development set of the second
CHiME challenge (Track 2).

−6dB −3dB 0dB 3dB 6dB 9dB Avg.
*CE

noisy 51.03 39.59 32.17 26.11 21.71 18.88 31.58
enhan 42.79 33.91 28.71 23.32 20.83 17.76 27.89
diff 43.19 34.21 27.75 23.12 20.30 17.39 27.66

uncert(t) 42.29 32.87 27.63 22.27 20.68 17.10 27.14
uncert(d) 42.19 33.22 28.37 23.38 20.43 17.55 27.52

uncert(t,d) 41.92 32.60 27.48 22.13 20.64 17.02 26.97
*SMBR

noisy 48.05 36.64 29.18 23.60 18.90 17.01 28.90
enhan 39.15 30.95 24.99 20.36 18.54 15.50 24.92
diff 39.42 30.46 24.35 20.56 17.47 15.39 24.61

uncert(t) 37.90 30.64 24.55 20.40 17.57 15.19 24.37
uncert(d) 38.50 30.05 24.58 20.30 18.31 15.49 24.54

uncert(t,d) 37.04 29.72 24.19 19.78 16.98 15.08 23.80

Table 2: WER [%] on development set of the second CHiME
challenge with the addition of random perturbation to the inter-
polated points.

σ −6dB −3dB 0dB 3dB 6dB 9dB Avg.
*CE
uncert(t)

0 42.29 32.87 27.63 22.27 20.68 17.10 27.14
0.005 41.45 32.13 27.39 22.92 20.15 17.10 26.86
0.010 41.70 32.44 27.51 22.76 20.19 17.30 26.99
0.015 41.08 32.76 27.63 23.01 19.81 16.65 26.83
uncert(d)

0 42.19 33.22 28.37 23.38 20.43 17.55 27.52
0.005 42.23 33.19 28.46 23.37 20.42 17.54 27.53
0.010 42.26 33.22 28.53 23.37 20.42 17.58 27.56
0.015 42.26 33.22 28.54 23.34 20.40 17.60 27.56
uncert(t,d)

0 41.92 32.60 27.48 22.13 20.64 17.02 26.97
0.005 40.85 31.73 27.13 22.82 19.80 16.79 26.52
0.010 40.60 32.04 26.94 22.17 19.59 17.20 26.42
0.015 40.54 31.82 27.36 22.33 19.13 16.36 26.26
*SMBR
uncert(t)

0 37.90 30.64 24.55 20.40 17.57 15.19 24.37
0.005 38.40 30.40 24.86 20.21 18.03 15.34 24.54
0.010 38.72 30.45 25.53 20.73 17.41 15.36 24.70
0.015 38.03 31.02 25.74 21.48 17.85 15.64 24.95
uncert(d)

0 38.50 30.05 24.58 20.30 18.31 15.49 24.54
0.005 38.44 30.08 24.58 20.31 18.31 15.49 24.53
0.010 38.49 29.89 24.71 20.39 18.01 15.70 24.53
0.015 38.49 30.20 24.55 20.19 18.29 15.49 24.53
uncert(t,d)

0 37.04 29.72 24.19 19.78 16.98 15.08 23.80
0.005 37.72 30.33 24.34 20.08 17.27 15.30 24.17
0.010 37.69 29.84 24.83 20.24 17.01 15.08 24.11
0.015 37.00 30.09 24.84 20.64 17.39 15.50 24.24

table) reduced the WER by 0.37% and 0.38% for the CE and
SMBR models, respectively. In this case, model re-training was
unnecessary but the computational time increased for decod-
ing. The proposed uncertainty training (“uncert(t)”) reduced
the WER by 0.75% and 0.55% for the CE and SMBR mod-
els, respectively. In this case, training time increased, whereas
the decoding time was almost the same as it was for “enhan”
and “diff”. For the DNN acoustic models, it is more effective
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Table 3: WER [%] on the evaluation set of the second CHiME
challenge, where ‘+p’ refers to the inclusion of random pertur-
bation at σ = 0.015.

−6dB −3dB 0dB 3dB 6dB 9dB Avg.
*CE

noisy 44.07 34.56 28.40 20.46 17.13 14.72 26.56
enhan 36.56 27.65 23.50 19.33 16.46 15.04 23.09
diff 38.05 28.58 23.13 18.85 15.62 13.58 22.97

uncert(t) 35.57 27.03 22.57 19.50 15.54 14.18 22.40
+p 35.62 27.29 22.53 18.27 15.77 13.77 22.21

uncert(d) 35.98 27.27 23.31 19.02 15.97 14.59 22.69
+p 35.94 27.26 23.28 18.98 16.01 14.65 22.69

uncert(t,d) 35.23 26.51 22.36 19.15 15.24 14.16 22.11
+p 35.16 26.62 22.42 18.48 15.62 13.49 21.96

*SMBR
noisy 40.91 32.21 26.42 18.64 15.54 13.82 24.59
enhan 32.11 25.22 20.49 16.74 14.46 12.72 20.29
diff 33.44 25.95 20.83 17.04 14.33 12.65 20.70

uncert(t) 32.36 25.82 20.68 17.17 14.16 12.91 20.51
+p 31.40 25.18 20.85 17.58 14.50 12.78 20.38

uncert(d) 31.89 24.64 20.16 16.59 14.22 12.42 19.99
+p 31.85 24.79 20.19 16.50 14.22 12.44 20.00

uncert(t,d) 31.98 24.68 20.31 17.15 13.92 12.57 20.10
+p 30.66 24.73 20.38 17.07 13.97 12.35 19.86

to consider uncertainties for training than for decoding. When
uncertainties are introduced to both training and decoding (“un-
cert(t,d)”), the WERs were significantly improved, by 0.92%
and 1.12%, for the CE and SMBR models, respectively.

Table 2 shows the effectiveness of random perturbation
(σ > 0 in Eq.(8)) to the interpolated points (see Section 2.3).
Although, for all σ’s, this method did not improve the ASR per-
formance for uncertainty decoding (“uncert(d)”), it improved
the performance for both uncertainty training (“uncert(t)”) and
the combination of training with decoding (“uncert(t,d)”). In
the case of σ = 0.015, for the CE acoustic model, the WER
improved by 0.31% for training, and by 0.71% for the combi-
nation of training with decoding. However, this method did not
improve the ASR performance for the SMBR model, which is
robust to frequent error patterns.

Table 3 shows the WER on the evaluation set, where ‘+p’
denotes the case of σ = 0.015. In this case, the introduction of
uncertainties improved the performance of training more than
decoding, and it achieved the best performance in the case of
“uncert(t,d)”. This trend was similar to that of the development
set. In this case, random perturbation to the uncertainty training
and both training and decoding improved the performance even
for the SMBR model. This shows that perturbation renders the
acoustic models more robust to unknown data. Finally, the pro-
posed method reduced the WER from “enhan” for the CE model
by 1.13% and for SMBR model by 0.43%, and outperformed
the “diff” by 0.12% and −0.41%. These results confirmed the
effectiveness of the proposed method.

4.2. The REVERB challenge

Table 4 shows the WER on the development set of the REVERB
challenge. The experiments in this section used fixed α’s. Al-
though the baseline performance was better than it was with the
CHiME challenge, the proposed method was also effective and
the trends were similar, i.e., the proposed method was more ef-
fective for training than decoding, and the combination further
improved the performance.

Table 5 shows the WER on the evaluation set. The pro-

Table 4: WER [%] on the development set of the REVERB
challenge simulation data.

Room1 Room2 Room3 Avg.
far near far near far near

*CE
noisy 6.69 5.16 11.17 7.02 13.18 8.14 8.56
enhan 6.78 5.85 9.86 6.11 10.36 6.97 7.66
diff 6.15 5.01 9.69 6.21 9.82 6.28 7.19

uncert(t) 6.59 5.53 9.29 5.92 9.77 6.13 7.21
uncert(d) 6.74 5.68 9.93 6.11 10.44 6.95 7.64

uncert(t,d) 6.44 5.43 9.17 6.09 9.77 5.98 7.15
*SMBR

noisy 5.36 4.11 9.54 5.52 10.29 6.90 6.95
enhan 5.51 4.57 7.79 5.13 8.21 5.04 6.04
diff 5.29 4.20 7.96 5.20 7.72 5.37 5.96

uncert(t) 5.41 4.30 7.42 5.15 8.11 4.77 5.86
uncert(d) 5.26 4.62 7.59 4.95 8.33 5.46 6.04

uncert(t,d) 5.29 4.18 7.54 5.15 7.86 4.92 5.82

Table 5: WER [%] on the evaluation set of the REVERB chal-
lenge simulation data.

Room1 Room2 Room3 Avg.
far near far near far near

*CE
noisy 6.44 5.76 11.91 7.46 13.27 8.21 8.84
enhan 6.44 6.05 9.89 6.12 12.04 6.21 7.79
diff 6.18 5.51 9.47 6.16 11.53 7.10 7.66

uncert(t) 6.00 5.69 9.05 5.74 11.17 6.26 7.32
uncert(d) 6.40 5.88 9.89 6.25 12.04 6.28 7.79

uncert(t,d) 5.90 5.62 9.03 5.79 11.05 6.24 7.27
*SMBR

noisy 5.40 5.01 9.64 5.87 10.93 7.20 7.34
enhan 5.73 5.29 7.72 5.35 9.57 5.77 6.57
diff 5.37 4.95 7.83 5.45 9.67 6.19 6.58

uncert(t) 5.40 5.13 7.81 5.58 9.31 6.12 6.56
uncert(d) 5.45 4.98 7.89 5.51 9.40 5.83 6.51

uncert(t,d) 5.25 5.03 7.80 5.42 9.13 5.89 6.42

posed method improved the WER from “enhan” for CE model
by 0.52% and for SMBR model by 0.15%, and outperformed
“diff” by 0.13% and −0.01%. Thus, the proposed method im-
proved the ASR performance for two tasks.

5. Conclusions
This paper proposed uncertainty training and decoding methods
for DNN acoustic models to address observation uncertainties
caused by speech enhancement. Our proposed method did not
change the structure or the training and decoding strategy of
the DNN. Rather, it realized uncertainty training and decoding
with an efficient sampling method for enhanced features. By
comparing the introduction of uncertainties to training and de-
coding, we discovered that the introduction of uncertainty to the
training is the most effective. In addition, a random perturba-
tion of interpolated points further improved the performance.
The effectiveness of the proposed method was confirmed for
noisy and reverberant two ASR tasks. Future work will seek to
develop an algorithm that determines the optimal interpolated
points depending on the type of noise.
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