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Abstract—Deep neural networks (DNNs) have proven very
successful for automatic speech recognition but the number of
parameters tends to be large, leading to high computational cost.
To reduce the size of a DNN model, low-rank approximations of
weight matrices, computed using singular value decomposition
(SVD), have previously been applied. Previous studies only fo-
cused on clean speech, whereas the additional variability in noisy
speech could make model reduction difficult. Thus we investigate
the effectiveness of this SVD method on noisy reverberated
speech. Furthermore, we combine the low-rank approximation
with sequence discriminative training, which further improved
the performance of the DNN, even though the original DNN was
constructed using a discriminative criterion. We also investigated
the effect of the order of application of the low-rank and sequence
discriminative training. Our experiments show that low rank
approximation is effective for noisy speech and the most effective
combination of discriminative training with model reduction is
to apply the low rank approximation to the base model first and
then to perform discriminative training on the low-rank model.
This low-rank discriminatively trained model outperformed the
full discriminatively trained model.

Index Terms—automatic speech recognition, deep neural net-
works, singular value decomposition, discriminative training

I. INTRODUCTION

Deep neural network (DNN) have been very successful
in the area of automatic speech recognition (ASR) [1].
Although DNNs outperform conventional Gaussian mixture
model (GMM) in many cases [1], [2], the number of param-
eters in DNNs tends to be greater than that in GMM. For
example, in the study of large vocabulary continuous speech
recognition ASR task [2], for a GMM based system, the
number of hidden Markov model (HMM) states is 3k and
the mixture of Gaussian per state is 32; totally, the number
of parameters is less than 10M. On the other hand, for DNN
based system, the number of HMM states is the same, the
number of nodes in each hidden layer is 2k, and the number
of hidden layer is seven; totally, the number of parameters is
over 30M. Thus the DNN model has three times larger number
of parameters, which increases the computational cost.

There are some attempts to reduce a DNN model size
[3], [4]. Xue et al. have proposed to apply singular value
decomposition (SVD) to DNN models and reduce the total
number of parameters. Their method reduces the rank of the
weight matrices and they show that SVD combined with fine-

tuning is effective experimentally [4]. In their experiments, the
speech data properties are not clear because their experiments
were performed on private data. However typical LVCSR
data uses close-talking microphones and so is relatively clean.
Under reverberant and noisy environments in far-field con-
ditions, DNN acoutic models need to be more complex to
handle the increased variability of the signal. In this scenario,
model reduction may have a negative effect on performance.
Thus, the effectiveness of this technique on noisy reverberated
speech needs to be evaluated.

Previous experiments on model reduction have focused on
frame-level discriminative criteria such as cross-entropy (CE).
However, sequence-level discriminative training of acoustic
models, using criteria such as maximum mutual information
(MMI) has improved the performance of conventional maxi-
mum likelihood based GMM models [5], [6], [7], as well as
DNNs [8], [9], [10], [11], [12], [13], [14]. When combining the
model reduction technique above with a sequence discrimina-
tive training, we need to investigate the effect of the order in
which model reduction and sequence discriminative training
are applied. For example it may be important to perform
discriminative training after after model reduction in order to
recover from loss of performance due to the approximation.
We evaluate three approaches: the first approach is to apply
SVD-based rank-reduction and fine-tuning for a CE full model
and to perform discriminative training on a low-rank CE
model; the second approach is to apply rank-reduction and
fine-tuning for a MMI full model; the third approach is to
perform discriminative training on the MMI low-rank model
obtained from the second approach. This paper investigates a
several combinations of SVD reduction techniques with DNN
sequence training experimentally for noisy reverberant speech
recognition.

II. DNN-HMM HYBRID ASR SYSTEMS

DNN-HMM hybrid ASR systems have been shown to out-
perform conventional GMM-HMM systems in a wide variety
of conditions. Let us assume that DNN acoustic parameters
θ are composed of L hidden layer. Here, 0-th layer is the
input layer and (L + 1)-th layer is the output layer. For
the l-th layer of DNN acoustic models (0 ≤ l ≤ L + 1),
n-dimensional input feature is denoted as xl. The output
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feature is m-dimensional and also an input feature of the
(l + 1)-th layer, thus, this can be denoted as xl+1. Non-
linear operation f is used in addition to linear operation. For
hidden layers, sigmoid function is used as f , whereas for the
last layer, softmax function is used. Weight matrix of Al

m×n

and offset bl are trained using back propagation (fine-tuning)
with stochastic gradient descent where the lower-suffix of the
matrices represents their dimension. From the lower layer to
the higher layer, feature x is propagated as

xl+1 = f
(
Al

m×nx
l + bl

)
. (1)

In this paper, the DNN was constructed by discriminatively
training hidden layers one by one.

The DNN model provides posterior probabilities for the
HMM state j at frame t. In the hybrid DNN approach, the
pseudo acoustic likelihood p is obtained as

p
(
x0
t |j

)
∝

p
(
j|x0

t

)
p0 (j)

, (2)

where p0 (j) is the prior probability calculated from the count
of training data. DNN input feature x0

t is a spliced feature
[xt−s, . . . ,xt, . . . ,xt+s] in contiguous (2s + 1) frames. The
DNN output is an output probability of each context-dependent
HMM state. A softmax activation function is used for the
output layer

p(j|x0
t ) =

exp a(j|x0
t )∑

j′ exp a(j
′|x0

t )
, (3)

where a is the pre-activation value of the output layer node j,
as a function of the input x0

t to the DNN.

III. REDUCING DNN MODEL SIZE USING LOW-RANK
APPROXIMATION

Although DNN-HMM systems outperforms conventional
GMM-HMM systems, the number of parameters in DNN tends
to be greater than that in GMM. Therefore, [4] proposed to
use SVD to reduce the rank of the weight matrix Al for a
given layer l to reduce the total number of parameters. Eq. (4)
factorizes matrix Al

m×n as

Al
m×n = Um×nΣn×nV

⊤
n×n. (4)

where Σ is a diagonal matrix, whose elements are singular
values arranged in a descending order (σ1 ≥ σ2 ≥ . . . ≥ σn),
U and V have orthonormal columns, and ⊤ denotes transpose.
To reduce the number of parameters of Am×n, the k largest
singular values and their corresponding left and right singular
vectors are used to from the low-rank factorization,

Al
m×n ≈ Um×kΣk×kV

⊤
k×n (k < n),

=
[
Um×k

√
Σk×k

] [√
Σk×kV

⊤
k×n

]
,

= A
l+ 1

2

m×kA
l
k×n.

(5)

Originally, computational costs of the matrix multiplication
Ax are proportional to O(mn). After low rank approximation,
this becomes O ((m+ n)k), so that computation is reduced

non-linear

function

(a) full model (b) low-rank model

Fig. 1. Reducing DNN model parameters via low-rank factoriztion, from (a)
5× 4 = 20 to (b) 5× 2 + 2× 4 = 18.

for k < mn/(m + n). The low rank approximation can be
viewed as decomposing the l-th layer into two layers, the first
a linear layer with weight matrix Al

k×n, and the second a

sigmoid layer with weight matrix, Al+ 1
2

m×k, as shown in Fig. 1.
In [4], Al

m×n is decomposed into the alternative factorization
[Um×k]

[
Σk×kV

⊤
k×n

]
which is functionally equivalent to (5).

With offsets, the new layers become:

xl+ 1
2 = Al

k×nx
l + bl,

xl+1 = f
(
A

l+ 1
2

m×kx
l+ 1

2 + bl+
1
2

)
.

(6)

where bl is a k-dimensional vector initialized to zero, and bl+
1
2

is the original bl. Fine tuning based on various discriminative
objective functions can then be applied.

IV. CROSS-ENTROPY TRAINING FOR DNN

For the CE criterion, the objective function is

FCE(θ) =
∑
r

∑
t

∑
j

p̂(j, t) log
p̂(j, t)

p(j|x0
t )
, (7)

where p̂(j, t) is the reference distribution for class label j at
time t. The gradient with respect to a is

∂FCE

∂a(j)
= p(j|x0

t )− p̂(j, t). (8)

Gradient descent based on the chain rule, known as back-
propagation, can then be used for optimization of the DNN
parameters

V. SEQUENCE MMI TRAINING FOR DNN

Sequence discriminative training considers the full HMM
state sequences. The DNN acoustic models parameter θ is
optimized according to the MMI objective function:

FMMI(θ) =
∑
r

log
pθ (x1:Tr |Hsr )

κ
pL(sr)∑

s pθ (x1:Tr |Hs)
κ
pL(s)

, (9)

where x1:Tr is the r-th utterance’s acoustic feature sequence
whose length is Tr, Hsr is the state sequence for correct label
sr and Hs is the state sequence for recognition hypothesis s, κ
is the acoustic scale, and pL is the language model likelihood.
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Fig. 2. Three approaches to generate MMI low-rank model with fine tuning
(FT).

The boosted version of Eq. (9) also follows

FbMMI(θ) =
∑
r

log
pθ (x1:Tr |Hsr )

κ
pL(sr)∑

s pθ (x1:Tr |Hs)
κ
pL(s)e−bA(s,sr)

.

(10)
The gradient w.r.t. softmax activation a becomes [8], [9], [10],
[13]:

∂FbMMI(θ)

∂a(j)
= κ(γnum

j,t − γden
j,t ), (11)

where γnum
j,t and γden

j,t are the numerator and denominator
posterior in Eq. (9) or (10). All DNN parameters are derived
from Eq. (11) based on the back-propagation procedure.

VI. COMBINATION OF SEQUENCE DISCRIMINATIVE
TRAINING WITH SVD

The order of discriminative training and model reduction
is important and not trivial. Fig. 2 shows three approaches to
generate discriminatively trained low-rank models, which we
tested in this paper. For all approaches, the initial model is
a cross-entropy (CE) trained full model. The first approach,
approach 1, is to apply SVD and fine-tuning for a CE full
model and to perform discriminative training on a low-rank
CE model; the second approach, approach 2, is to apply SVD
and fine-tuning for a MMI full model; the third approach,
approach 3, is to perform discriminative training on the MMI
low-rank model obtained from approach 2.

VII. EXPERIMENTS

A. Setup

We evaluated the performance on the second CHiME chal-
lenge Track 2, which was designed for evaluating the word
error rate (WER) of a medium vocabulary task (Wall Street
Journal (WSJ0)) under reverberated and non-stationary noisy
environments [15]. The language model size was 5 k (basic).
The development set, si dt 05, contained 409 utterances from
10 speakers; the evaluation data set, si et 05 contained 330
utterances from 12 speakers (Nov’92). Acoustic models were
trained on the training set, which contained 7,138 utterances
from 83 speakers. The acoustic scale κ was tuned using
si dt 05. These data simulated realistic environments. Noise

TABLE I
DNN STRUCTURE CORRESPONDING TO SVD {1,2,3}.

input −→ output

CE-full (2.85M) 360× 331 + 3312 × 2 + 331× 8000

SVD1 (1.47M) 360× 100 + 100× 331 + (331× 96)× 2× 2

+ 331× 162 + 162× 8000

SVD2 (1.52M) 360× 331 + (331× 96)× 2× 2

+ 331× 162 + 162× 8000

SVD3 (1.59M) 360× 331 + 3312 × 2 + 331× 160 + 160× 8000

SVD3 (1.91M) 360× 331 + 3312 × 2 + 331× 200 + 200× 8000

was non-stationary, such as other speakers’ utterances, house-
hold noise, or music and was added to ‘isolated’ speech
at SNR = {−6,−3, 0, 3, 6, 9}dB. Although the database
provided two-channel data, we used noise-suppressed single-
channel data obtained by prior-based binary masking [16].

The settings of the acoustic features and feature transforma-
tion were as follows [17]. We used Povey’s implementation of
neural network training in the Kaldi toolkit [18]. The baseline
features were 0th∼12th order MFCCs + ∆ + ∆∆. Feature
transformation techniques (linear discriminant analysis (LDA)
and maximum likelihood linear transformation (MLLT)) and
speaker adaptation techniques (speaker adaptive training (SAT)
and feature space maximum likelihood linear regression (fM-
LLR)) were used to obtain 40-dimensional speaker-adapted
features. The DNN input features were 9 consecutive frames
of these feature concatenated into a 360-dimensional feature
vector.

The procedure of training acoustic models and the setup of
feature transformations are described in [16], [17]. The number
of the context-dependent HMM states was 1,989, which is
equal to that of the last softmax layer outputs. The number
of hidden layer was three. The initial learning rate for a CE
full model was 0.01 and was decreased to 0.001 at the end
of training. Starting from single-layer neural networks, we
added layers one by one in every two iterations. One iteration
used 400,000 samples. The total number of parameters was
summarized in Table I. In the CE training, the number of epoch
was 15 for reducing learning rates and 5 for the constant final
learning rate. Minibatch size was 128. After applying SVD to
the CE full model or MMI full model, fine-tuning needed 3
epochs for reducing learning rates from 0.001 to 0.0005 and 2
epochs for the constant final learning rate. For boosted MMI
training, the learning rate was 0.001 when starting with the full
CE model and 0.0001 for the low-rank models. The learning
rate must be smaller for low-rank models than for full models
because stochastic gradient descent tends to be less stable for
low-rank models.

We evaluated three ways of applying SVD to full models:
the first one was applying SVD to the all hidden layers (SVD
1); the second one was applying SVD to the all hidden layers
except the first hidden layer because the first hidden layer has
an important role for extracting features (SVD 2); the third one
was applying SVD to the last layers, which have the largest
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TABLE II
WER [%] ON THE CHIME CHALLENGE TRACK 2 (SI DT 05) USING

DNN MODEL SHOWING THE EFFECTIVENESS OF SVD AND FINE-TUNING
(FT) ON NOISY REVERBERATED SPEECH RECOGNITION. INITIAL MODEL

WAS CE-FULL MODEL. APPLYING THREE TYPES OF SVD TO THIS
MODEL, SVD {1,2,3} MODELS WERE OBTAINED. INPUT FEATURES

WERE MFCC + LDA+MLLT + SAT+FMLLR (40 DIMENSION ×
CONTIGUOUS 9 FRAMES).

−6dB −3dB 0dB 3dB 6dB 9dB Avg.

CE-full (2.85M) 53.44 42.40 34.53 27.94 24.77 20.49 33.93
SVD1 (1.47M) wo FT 58.95 48.52 40.15 34.33 31.05 26.10 39.85

w FT 53.81 42.88 35.58 28.74 25.36 21.92 34.72
SVD2 (1.52M) wo FT 59.06 48.59 40.12 34.30 31.07 26.08 39.87

w FT 52.68 42.06 34.34 28.29 24.96 20.58 33.82
SVD3 (1.59M) wo FT 58.93 48.12 39.98 33.97 30.48 25.36 39.47

w FT 51.82 41.04 32.64 26.42 23.63 19.87 32.57
SVD3 (1.91M) wo FT 57.09 46.72 38.91 33.04 29.08 24.07 38.15

w FT 51.76 40.67 32.87 26.21 23.79 19.86 32.53

number of parameters (SVD 3).

B. Results and discussions

1) Which type of SVD is the best?: Table II shows the WER
on si dt 05. These models were all cross-entropy (CE) model
without sequence discriminative training. After SVD, without
fine-tuning (FT), every low-rank model degraded significantly.
Fine-tuning greatly improved the performance of all models,
consitent with the results of [4]. Among them, the SVD3 type
of decomposition was the best. The performance of SVD1
was inferior to that of SVD2. This indicates that the weight
matrices in the first layer had higher effective rank than those
in the upper layers.

2) Which type of discriminative training approach is the
best?: Table III shows the results of discriminatively trained
models. Sequence discriminative training led to significant im-
provements for the full model. In approach 1, The performance
improvement of low-rank CE model was larger than CE full
model, which is reported in general discriminative training
studies for speech recognition that smaller models have bigger
improvement [19]. In approach 2, without FT, the performance
of bMMI low-rank model was better than that of CE low-rank
model without FT, however, for the bMMI low-rank model,
FT was less effective. In approach 3, discriminative training
on the bMMI low-rank model again improved the performance
but was less effective than for CE low-rank model perhaps due
to over-training. Overall approach 1 was the best.

3) Evaluation set: Table IV shows the results on evaluation
set (si et 05). Tendencies were the same to the development
set. SVD 3 types of decomposition was effective and their
performance was superior to that of the original bMMI full
model by 1% absolute.

VIII. CONCLUSION

To reduce the number of DNN parameters, a model re-
duction technique using low-rank approximation has been
applied to noisy reverberant speech recognition. Experiments
demonstrate that low-rank approximation of the last layer of

TABLE III
WER [%] ON THE CHIME CHALLENGE TRACK 2 (SI DT 05) USING

DNN MODEL SHOWING THE EFFECTIVENESS OF SEQUENCE
DISCRIMINATIVE TRAINING. INITIAL MODEL IS CROSS-ENTROPY (CE)

MODEL. THREE TYPES OF APPROACHES WERE EVALUATED.

−6dB −3dB 0dB 3dB 6dB 9dB Avg.

bMMI-full (2.85M) 48.37 36.66 30.15 24.18 20.71 17.27 29.56
*Approach 1 (from CE low-rank model)
SVD1 (1.47M) bMMI 47.87 37.62 30.61 24.43 21.23 18.07 29.97
SVD2 (1.52M) bMMI 47.38 36.47 29.30 24.00 20.64 17.32 29.19
SVD3 (1.59M) bMMI 46.36 35.11 28.06 23.03 19.41 16.48 28.08
SVD3 (1.91M) bMMI 47.03 35.31 28.38 22.82 19.53 16.77 28.31
*Approach 2 (from bMMI full model)
SVD1 (1.47M) wo FT 54.61 43.30 35.79 30.80 27.25 22.39 35.69

w FT 53.25 42.51 34.93 28.81 25.30 21.71 34.42
SVD2 (1.52M) wo FT 54.82 43.27 35.89 30.83 27.28 22.54 35.77

w FT 52.80 41.64 34.39 27.70 24.56 20.96 33.68
SVD3 (1.59M) wo FT 54.08 42.13 34.64 29.41 25.87 21.79 34.65

w FT 51.67 41.26 33.15 26.60 23.57 19.66 32.65
SVD3 (1.91M) wo FT 52.97 41.07 33.94 27.66 24.72 20.77 33.52

w FT 51.60 40.64 33.13 26.61 23.51 19.72 32.54
*Approach 3 (from Approach 2 model)
SVD1 (1.47M) bMMI 48.61 37.81 30.82 25.20 21.52 18.47 30.41
SVD2 (1.52M) bMMI 48.10 36.95 30.54 23.82 21.20 17.54 29.69
SVD3 (1.59M) bMMI 47.71 36.91 29.36 23.35 20.56 16.96 29.14
SVD3 (1.91M) bMMI 47.74 37.14 29.34 23.31 20.55 17.14 29.20

TABLE IV
WER [%] ON THE CHIME CHALLENGE TRACK 2 (SI ET 05) USING

DNN MODEL SHOWING THE EFFECTIVENESS OF SEQUENCE
DISCRIMINATIVE TRAINING. INITIAL MODEL IS CROSS-ENTROPY (CE)

MODEL.

−6dB −3dB 0dB 3dB 6dB 9dB Avg.

CE-full (2.85M) 44.48 35.72 29.46 21.99 16.63 15.34 27.27
bMMI-full 39.02 28.94 23.39 18.27 13.94 11.96 22.59
*Approach 1 (from CE low-rank model)
SVD1 (1.47M) bMMI 40.03 29.67 23.97 18.51 14.40 12.74 23.22
SVD2 (1.52M) bMMI 39.47 28.41 23.11 18.16 13.53 12.11 22.47
SVD3 (1.59M) bMMI 37.94 27.59 22.53 17.39 12.87 10.97 21.55
SVD3 (1.91M) bMMI 37.51 27.65 22.42 17.52 12.82 11.47 21.57

DNN or all layers except the first layer is more effective than
rank reduction of all layers. Sequence discriminative training
further improved performance. The most effective combination
of discriminative training with model reduction was to reduce
the base model first and then to perform discriminative training
on the low-rank model. This discriminatively trained low-rank
model outperformed the discriminatively trained full model.
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