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Abstract
Linear discriminant analysis (LDA) is a simple and effective
feature transformation technique that aims to improve discrim-
inability by maximizing the ratio of the between-class variance
to the within-class variance. However, LDA does not explicitly
consider the sequential discriminative criterion which consists
in directly reducing the errors of a speech recognizer. This pa-
per proposes a simple extension of LDA that is called sequen-
tial LDA (sLDA) based on a sequential discriminative criterion
computed from the Gaussian statistics, which are obtained from
sequential maximum mutual information (MMI) training. Al-
though the objective function of the proposed LDA can be re-
garded as a special case of various discriminative feature trans-
formation techniques (for example, f-MPE or the bottom layer
of a neural network), the transformation matrix can be ob-
tained as the closed-form solution to a generalized eigenvalue
problem, in contrast to the gradient-descent-based optimiza-
tion methods usually used in these techniques. Experiments on
LVCSR (Corpus of Spontaneous Japanese) and noisy speech
recognition task (2nd CHiME challenge) show consistent im-
provements from standard LDA due to the sequential discrim-
inative training. In addition, the proposed method, despite its
simple and fast computation, improved the performance in com-
bination with discriminative feature transformation (f-bMMI),
perhaps by providing a good initialization to f-bMMI.

Index Terms: Maximum mutual information, linear dis-
criminant analysis, region dependent linear transformation

1. Introduction
Feature transformation with dimensionality reduction is usu-
ally the first step in the front-end pipeline for automatic speech
recognition (ASR). Such methods allow the use of long-context
features that can consider the influence across multiple frames
directly instead of using traditional delta features. One of the
simplest and widely used methods has been linear discriminant
analysis (LDA) [1], which maximizes the ratio of the between-
class variance to the within-class variance, where the classes are
typically derived from the context-dependent phoneme states.
An advantage of LDA is that it provides a simple and effi-
cient closed-form solution to estimate the transformation. One
of its limitations is the assumption of equal covariance for the
classes. To relax the constraint of equal covariance of LDA,
heteroscedastic discriminant analysis (HDA) and heteroscedas-
tic LDA (HLDA) have been proposed [2, 3].

Another limitation of LDA is the lack of explicit consider-
ation of speech recognizer (decoder) outputs. The purpose of
feature transformation is essentially to provide features appro-
priate for recognition. LDA aims to improve discriminability of

features but standard LDA deals the same way with classes that
are easy to distinguish for the recognizer as with classes that are
difficult to classify (i.e., easy to confuse).

Owing to the recent progress in discriminative training
methods, it is well known that a sequential discriminative train-
ing with recognizer error tendencies is effective for various con-
ventional techniques such as acoustic modeling or feature space
discriminative training. Maximum mutual information (MMI)
criterion [4] or minimum phoneme error (MPE) criterion [5] are
effective training criteria because they consider the patterns of
error at the recognition level, in order to focus on distinguishing
the most important states. During training, these methods typi-
cally employ extended-Baum-Welch (EBW) updates, where the
sufficient statistics for model parameter estimation are based on
functions of the posterior probabilities of the recognition word
sequences. Feature transformation based on such methods can
improve the ASR performance further.

Linear feature transformation generally consists of projec-
tion matrices and offset terms. LDA is a global (single region)
linear projection with no offsets. In contrast, region depen-
dent linear transformation (RDLT) [6] first divides the feature
space into regions, and for each region separate transforms can
be applied. Discriminative approaches such as MPE-HLDA
[7], which is an extension of HLDA based on the MPE crite-
rion, feature space MPE (f-MPE) [8], and MMI-SPLICE [9],
have been proposed. Such methods typically require iterative
gradient-descent optimization. Typically, LDA features are still
used as input to such methods since they are simple to compute
and provide a reasonable starting point.

The proposed method is an extension of standard LDA
based on the MMI objective function in order to consider the
recognition posteriors when feature statistics are calculated.
The advantages of the proposed method are the existence of
a closed-form solution, and the simplicity of implementation
which amounts to a simple modification of the sufficient statis-
tics computation.

This paper first describes in Section 2 the conventional LDA
[1], mainly from the perspective described in [2, 10]. Next, our
proposed MMI approach is described in Section 3. Experiments
on two different tasks show that the proposed method improves
speech recognition performance on two data sets in Section 4.

2. Maximum Likelihood LDA
When xt ∈ R

n is the tth frame n-dimensional input feature,
which is usually obtained by concatenating original MFCC fea-
tures of contiguous several frames, LDA feature transformation
[1, 10] transforms xt to lower dimensional feature yt ∈ R

p as

yt = Axt, (1)
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where A is an LDA feature transformation matrix whose di-
mension is p × n, which (p < n). The objective function of
LDA is given as

argmax
A

|ABA�|
|AWA�| , (2)

where � denotes a transposition and B andW denote n × n
between-class scatter matrix and within-class scatter matrix as
defined in Eq. (3), respectively:

B =
1∑
j Nj

∑
j

Njμ
x
j(μ

x
j)
� − μ̄x(μ̄x)�,

W =
1∑
j Nj

∑
j

NjΣ
x
j ,

(3)

where μx andΣx are the mean vector and co-variance matrix in
the original vector x space, Nj is the count of elements which
belong to the j-th class, and μ̄x is the average of all vectors μxj .
Generally, μxj andΣx

j are computed [10] for class j as

Nj =
∑
t

ψt(j),

μx =
1

Nj

∑
t

ψt(j)xt,

Σx
j =

1

Nj

∑
t

ψt(j)xtx
�
t − μxj(μ

x
j)
�,

(4)

where, ψt(j) are class membership weights relating xt to class
j. In the classic LDA, the class assignments, given by j = l(t),
are hard, so ψt(j) can be defined as:

ψt(j) =

{
1: l(t) = j,

0: otherwise.
(5)

Here, we assume that LDA class j is related to the HMM state
number as in the most general case. In this case, alignments by
the HMM model correspond to the class label.

A solution to LDA is obtained by solving the following gen-
eralized eigenvalue problem [11],

Bv = λW v, (6)

and assigning to the rows of A the eigenvectors vT1:p corre-
sponding to the p largest eigenvalues λ1:p.

It has been shown by Kumar et al. that standard LDA
has the same optimum as a maximum likelihood problem [2].
In this problem, the model has tied state-dependent variances
in yt = Axt, and the mean and variance in the orthogonal
subspace y′t = A′xt are state-independent, where A′ is an
(n− p)× n matrix having rows orthogonal to those ofA.

This result can be generalized to a full HMM model, with
tied parameters in the style of Kumar, by considering the maxi-
mum likelihood objective function:

FMLK = lnP (Y , ωr), (7)

where Y = {y1, · · · } is the sequence of transformed feature
vectors, and ωr is the correct word label. The derivative of this
model with respect to a model parameter θj is

∂FMLK

∂θj
=

∑
t

∑
j

∂FMLK

∂ ln p(yt|j)
∂ ln p(yt|j)

∂θj
, (8)

=
∑
t

∑
j

γt(j)
∂ ln p(yt|j)

∂θj
, (9)

where p(yt|j) is the acoustic model state conditional probabil-
ity. Setting these derivatives equal to 0 and solving for model
parameters leads to the state-dependent means and variances as
calculated in Eq. (4) with

ψt(j) = γnumt (j), (10)

for state j. This again leads to a solution to the LDA problem
using the generalized eigenvalue problem (6), this time with soft
class membership determined by the state posteriors. For mod-
els estimated using the Baum-Welch algorithm, the above LDA
statistics more closely correspond to those used in estimating
the model. This means that the matrices B and W are more
accurately estimated in this case.

3. Sequential Maximum Mutual
Information LDA

3.1. Derivation from MMI objective function

Section 2 describes the linear transformation which maximizes
scatter between classes and minimizes scatter within classes
based on the correct labels as in Eq. (2). However, because
the maximum likelihood statistics are different from the MMI
statistics, the resulting B and W are not accurate for MMI-
based models. Similar to the MMI discriminative training of
acoustic model parameters, posteriors of denominator lattices
γdent should be taken into account. We call this method sequen-
tial MMI LDA (sLDA).

The MMI objective function is given as

FMMI = ln
P (Y , ωr)∑
ω P (Y , ω)

, (11)

where ω are the hypotheses of the original system. The deriva-
tive of the MMI objective function (11) by state-dependent
model parameters θj , as in MMI-SPLICE [9], is

∂FMMI

∂θj
=

∑
t

∑
j

∂FMMI

∂ ln p(yt|j)
∂ ln p(yt|j)

∂θj
,

=
∑
t

∑
j

Δt(j)
∂ ln p(yt|j)

∂θj
,

(12)

where p(yt|j) is the acoustic model state conditional probabil-
ity. This leads to the same mean and variance estimation as
Eq. (4), except that here ψt(j) = Δt(l(t)). However, since
Δt(j) can be negative, usually extended Baum-Welch updates
are used, because they maintain positivity. Here we introduce
a parameter α (0 ≤ α ≤ 1) that reduces the strength of the
denominator term γdent (j):

ψt(j) = γnumt (j)− αγdent (j). (13)

If α equals to zero, this equation reduces to that of LDA.
The proposed method can be interpreted as a form of LDA

with a soft feature selection [12] corresponding closely to the
MMI model. Little weight is imposed on the data where γdent (j)
is near one and this corresponds to the correct case for a recog-
nizer. This realizes an adjustment of the weight of the train-
ing data according to the errors made by the recognizer. How-
ever, as the between-class varianceB remains global, it is only
slightly affected by the MMI-based weights, and this method
still focuses on all classes. Nevertheless, it has a simple closed-
form solution, and an easy implementation, so may be useful as
a starting point for more advanced discriminative transforms.
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3.2. I-smoothing interpretation

Equation (13) can be rewritten as

ψt(j) = (1− α)γnumt (j) + αΔt(j). (14)

This equation can be interpreted as a smoothing between the
difference statistics Δt(j) and the class label posterior γnumt (j)
with interpolation ratio α. Thus, by setting the parameter α less
than 1, α helps avoid over-training and is related to I-smoothing
[5], which is widely used for discriminative training of acoustic
models.

3.3. Boosted MMI extension

In analogy to boosted MMI [8], we can introduce a boosting
factor b that boosts the posteriors of hypotheses based on the
phoneme accuracy. The boosted MMI objective function is:

FbMMI = ln
P (Y , ωr)∑

ω P (Y , ω)e−bH(ω,ωr)
, (15)

where H(ω, ωr) is the phoneme accuracy. The boosted ver-
sion of the weights can be obtained as in the classical boosted
MMI framework, by using the forward-backward algorithm on
the denominator lattice, and adding, for each state, −b times
the contribution to the sentence level accuracy. Denoting by
γb,den
t (j) the denominator term, we obtain a bMMI version of
the weights ψb

t (j):

ψb
t (j) = γnumt (j)− αγb,den

t (j). (16)

The boosting factor b is typically taken to be negative so as to
put more focus on frames with low accuracy than on those with
high accuracy.

4. Experiments
4.1. Experimental setup

We evaluated the performance improvement on two corpora:
the Corpus of Spontaneous Japanese (CSJ) [13] and the sec-
ond CHiME challenge Track 2 [14]. The former is one of the
most widely used large vocabulary continuous speech recog-
nition (LVCSR) tasks (vocabulary size is about 70k). Three
types of test sets are provided and each set consists of 10 speak-
ers’ lecture-style speech. Test sets 1, 2, and 3 contain 22,682,
23,226, and 14,896 words, respectively. The first aim of our ex-
periments is to validate the effectiveness of the proposed sLDA
compared to the conventional LDA when changing the parame-
ters α and b in Eq. (16). The HMM was trained with maximum
likelihood estimation using 0th∼12th order MFCCs +Δ +ΔΔ,
the number of context-dependent HMM states was 3,500 and
the total number of Gaussians was 96,000.

The CHiME challenge Track 2 is designed for evalu-
ating the ASR performance of a medium vocabulary task
(Wall Street Journal (WSJ0), vocabulary size is 5k) under
reverberated and noisy environments with WER. The noise
is non-stationary, such as other speakers’ utterances, house-
hold noise, or music and is added to ‘isolated’ speech at
SNR = {−6,−3, 0, 3, 6, 9}dB. This task is aimed to vali-
date the performance of the proposed sLDA for noise robust
speech recognition task, and the effectiveness of its combina-
tions with discriminative training of acoustic models (Gaussian
Mixture Model and Deep Neural Networks (DNN)) and fea-
ture space discriminative training (f-bMMI) [8]. We used noise-
suppressed single-channel data obtained by prior-based binary

Table 1: WER of the conventional LDA (α = 0) and the pro-
posed sequential maximum mutual information LDA (sLDA)
with different α and b, which are smoothing and boosting fac-
tors in Eq. (16), respectively, on CSJ database.

α b test1 test2 test3 Avg.
LDA 0 0 20.42 17.95 19.22 19.20

0.1 0 20.39 17.81 19.49 19.23
0.3 0 20.47 17.93 19.28 19.23
0.5 0 20.44 17.81 19.14 19.13
0.7 0 20.40 17.83 19.03 19.09
1.0 0 20.51 17.68 18.77 18.99
0.1 −0.1 20.46 17.86 19.29 19.20
0.3 −0.1 20.28 17.74 19.21 19.08
0.5 −0.1 20.38 17.87 19.08 19.11
0.7 −0.1 20.43 17.63 19.13 19.06
1.0 −0.1 20.60 17.65 18.91 19.05

LDA 0 0 19.09 16.31 17.21 17.54
+MLLT 0.1 0 19.13 15.96 17.23 17.44

0.3 0 19.08 15.91 17.07 17.35
0.5 0 19.04 16.12 17.25 17.47
0.7 0 19.09 16.03 17.11 17.41
1.0 0 18.90 16.24 16.94 17.36
0.1 −0.1 19.20 16.21 17.33 17.58
0.3 −0.1 19.07 16.21 17.09 17.46
0.5 −0.1 18.96 16.11 17.07 17.38
0.7 −0.1 18.87 16.09 17.19 17.38
1.0 −0.1 19.17 16.05 17.11 17.44

masking [15] and used the Kaldi toolkit [16] with the baseline
evaluation tool that we provided [15, 17]. The development set
(si dt 05) contained 409 utterances including 6,779 words from
10 speakers, and the evaluation data set (si et 05) contained 330
utterances including 5,353 words from 12 speakers (Nov’92)
for each SNR condition. The number of HMM states was 2,500
and the total number of Gaussians was 15,000. For the DNN,
we used Povey’s implementation of DNN training in Kaldi with
3 hidden layers and 1,000,000 parameters. The initial learning
rate was 0.01 and was decreased to 0.001 at the end of train-
ing. The baseline features were 0th∼12th order MFCCs + Δ +
ΔΔ. Moreover, we combine LDA with Maximum Likelihood
Linear Transformation (MLLT) [18, 19], which is usually per-
formed with LDA as a set of feature transformation techniques.
For the CHiME corpus, speaker adaptation technique, namely
Speaker Adaptive Training (SAT) and feature space Maximum
Likelihood Linear Regression (fMLLR), were also applied.

4.2. CSJ (LVCSR)

Table 1 shows the experimental results on the CSJ corpus. Al-
though the performance improvement depended on the param-
eter α, overall, the proposed sLDA worked better than the con-
ventional LDA (α = 0) even when combined with MLLT. For
the best case (bold case in the table), absolute 0.21% and 0.19%
WER reductions for sLDA and sLDA+MLLT respectively were
observed. Unfortunately, the boosted extension had little impact
on the results, and for the rest of the experiments, the boosting
factor b was set to zero.
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Table 2: WER[%] for isolated speech (si dt 05) of the CHiME
challenge with different αs using ML acoustic model for noisy
speech recognition with noise suppression by prior-based bi-
nary masking (sLDA+MLLT).

α −6dB −3dB 0dB 3dB 6dB 9dB Avg.
0 64.64 54.24 46.35 37.91 32.75 28.96 44.14
0.1 64.64 53.81 46.45 38.65 32.75 29.15 44.24
0.3 64.88 53.72 45.58 37.13 31.89 28.43 43.61
0.5 64.71 53.84 46.20 37.81 32.25 28.81 43.94
0.7 64.48 54.43 45.88 37.51 32.44 28.69 43.91
1.0 64.36 54.29 45.01 37.81 32.59 28.96 43.84

Table 3: WER[%] for isolated speech (si dt 05) using ML and
discriminatively trained acoustic model (bMMI) with feature-
space discriminative training (f-bMMI). LDA+MLLT (upper),
sLDA+MLLT (lower).

−6dB −3dB 0dB 3dB 6dB 9dB Avg.
ML 64.64 54.24 46.35 37.91 32.75 28.96 44.14
bMMI 63.39 52.54 44.56 35.60 30.98 28.10 42.53
f-bMMI 60.92 50.41 41.76 33.59 29.56 25.90 40.36
ML 64.88 53.72 45.58 37.13 31.89 28.43 43.61
bMMI 62.75 51.78 44.24 35.92 30.80 27.32 42.14
f-bMMI 60.27 49.26 41.08 32.95 28.63 25.17 39.56

4.3. Second CHiME Challenge Track 2 (Noise robust ASR)

Table 2 continues to investigates further the influence of the pa-
rameter α on performance through experiments on the CHiME
challenge Track 2. MLLT is used in addition to the proposed
sLDA. In average, for the cases where α is 0.3 or more, the
speech recognition performance was improved and the case
α = 0.3 achieved the best improvement (0.53% absolute WER
reduction), which is the same as in Table 1. From Tables 1 and
2, we validate that the proposed LDA was superior to the con-
ventional LDA on two different ASR tasks.

Table 3 shows the results with discriminative training of
acoustic model (bMMI) and feature space discriminative train-
ing (f-bMMI). For both cases, the proposed method improved
the speech recognition performance, especially for the f-bMMI
case (0.8% absolute WER reduction). The combination of the
proposed method and f-bMMI achieved an additional improve-
ment. This suggests that preliminary discriminative classifica-
tion of the proposed method provided a good initialization to f-
bMMI, which is also discriminative feature transformation with
more precise region-dependent modeling.

Tables 4 and 5 show the results on the development and
evaluation sets additionally with speaker adaptive training, fM-
LLR type speaker adaptation, and DNN system in order to vali-
date the effectiveness of the proposed method in a state-of-the-
art ASR system. Although for the DNN system the average
ASR performance degraded on the evaluation set, the proposed
method improved the performance for all the SNR conditions
in the development set, and for half of the SNR conditions (−3,
3, and 9dB) in the evaluation set. Overall, the proposed method
improved the average ASR performance by up to 0.9% absolute.

5. Conclusion and Future Work
This paper proposed to extend LDA based on sequential MMI
training methods by using the discriminatively modified suffi-

Table 4: WER[%] for isolated speech (si dt 05) with speaker
adaptive training, speaker adaptation (fMLLR), and min-
imum Bayes risk decoding (MBR). LDA+MLLT (upper),
sLDA+MLLT (lower).

−6dB −3dB 0dB 3dB 6dB 9dB Avg.
ML 59.94 47.93 39.83 33.01 28.00 23.47 38.70
bMMI 56.90 45.79 37.60 30.31 26.15 21.74 36.42
f-bMMI 52.93 42.62 34.59 27.63 24.27 20.24 33.71
(+MBR) 52.65 42.04 33.75 27.05 23.74 19.91 33.19
DNN 52.78 42.50 34.08 27.05 24.13 20.12 33.44
bMMI 47.34 36.33 28.96 23.40 20.03 17.05 28.85
(+MBR) 46.79 35.68 28.44 22.88 19.91 16.64 28.39
ML 59.21 48.40 39.28 32.41 27.72 22.86 38.31
bMMI 56.14 45.51 36.69 29.55 26.08 21.33 35.88
f-bMMI 53.09 43.34 33.71 27.16 23.93 19.78 33.50
(+MBR) 52.60 42.51 33.03 26.38 23.34 19.18 32.84
DNN 52.91 41.81 32.56 27.73 24.31 19.68 33.17
bMMI 47.31 36.13 28.49 23.50 20.00 16.57 28.67
(+MBR) 46.59 35.31 27.84 22.82 19.69 16.49 28.12

Table 5: WER[%] for isolated speech (si et 05) with
speaker adaptive training and speaker adaptation (fMLLR).
LDA+MLLT (upper), sLDA+MLLT (lower). In this table, DNN
is DNN with boosted MMI.

−6dB −3dB 0dB 3dB 6dB 9dB Avg.
ML 50.91 41.64 33.89 26.30 21.61 18.85 32.20

f-bMMI 44.54 35.91 29.24 22.31 17.77 15.88 27.61
(+MBR) 44.51 35.42 28.81 21.46 17.41 14.98 27.10
DNN 37.98 28.26 21.86 17.71 12.61 11.75 21.70
(+MBR) 37.14 27.35 21.41 16.94 12.55 11.54 21.16
ML 50.46 42.05 32.80 26.42 21.22 18.61 31.93

f-bMMI 44.85 35.05 27.69 21.43 17.34 14.74 26.85
(+MBR) 44.07 34.09 27.22 20.33 16.85 14.61 26.20
DNN 38.63 27.54 22.55 17.37 13.23 11.69 21.84
(+MBR) 37.98 27.16 21.73 16.93 12.83 11.23 21.31

cient statistics computed from the lattices. The advantages of
the proposed method are its low complexity and ease of imple-
mentation, in that it boils down to a simple modification of the
computation of the sufficient statistics. Experiments on both
an LVCSR task and a noise robust ASR task show its effec-
tiveness. Although our approach is based on the closed-form
solution of a generalized eigenvalue problem and is in that re-
gard different from other discriminative feature transformation
methods based on EBW or gradient-descent optimization tech-
niques, future work will consider in more depth the theoretical
relationships between them.
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