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Recent prevalence of speech recognition system increases the opportunity of simultaneous recognition of multiple speakers’
utterances. There are two types of source separation methods: physical and statistical. The former is based on the physical
information such as a direction of arrival of sound sources. The latter only uses statistical independence. The advantage of the
former is fast computation and effectiveness with precise information; and that of the latter is no need for physical information,
which leads to the robustness of measurement errors. In this paper, we propose to combine these approaches effectively.
Experiments on a speech recognition task show that the proposed method can achieve the upper limit performance of the two
approaches. © 2014 Institute of Electrical Engineers of Japan. Published by John Wiley & Sons, Inc.
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1. Introduction

Recent progress in speech recognition widens the target user
base. In this scenario, simultaneous recognition of multiple speak-
ers’ utterances for a real-time use of a single system is required.
Before recognition, some source separation approaches are applied.
The most general one is based on physical information, such as
the direction of arrival of the sound [1]. This method is fast and
effective but susceptible to errors in physical information. On the
other hand, blind source separation approach based on statistical
independence [2] is more time consuming and may be inferior to
the physical method with precise information but can be robust
for measurement errors. In this paper, we propose to combine
these physical and statistical approaches effectively to improve
the robustness of source separations.

2. Binary masking in the time–frequency domain

From now on, the number of microphones is assumed to be
2. When x1 and x2 are the short-time Fourier transforms of the
observed signals for the first and second microphone, respectively,
a cross-spectrum of them at the time frame t (1 ≤ t ≤ T ) and
frequency bin ω is represented as

x2(ω, t)/x1(ω, t) = Aejωτ(ω,t), (1)

where j is an imaginary unit, A is a positive amplitude ratio, and
τ(ω, t) is a time difference between them. The masking matrix W
is composed of two vectors w 1 and w 2:

W (ω, t) = (w 1(ω, t), w 2(ω, t))h , (2)

where h is an Hermite transpose. If the direction of the sound
source θ is known, binary masking (BM) on time–frequency
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domain constructs the masks W as [1]

w k (ω, t) =
{

εek : | c
lm

sin−1 τω,t − θ | > θc ,

ek : otherwise,
(3)

where k is the microphone ID, ek is a unit vector whose k th
element is 1, ε is a small number for smoothing, and θc is a
tolerance error. c is a sound velocity and lm is the distance between
microphones. Separated signal y is obtained as

y(ω, t) = W (ω, t)x(ω, t), (4)

where x(ω, t) and y(ω, t) are vector forms of (x1(ω, t), x2(ω, t))�
and (y1(ω, t), y2(ω, t))�. � denotes a transpose. Separation is
effective when the physical variables above are all reliable.

3. IVA using auxiliary function

Statistical method uses only the independence between sources
and needs no physical information above. The most major sta-
tistical method, namely independent component analysis (ICA),
causes the permutation problem about separated speakers because
this method separates sources at each frequency bin. To address
this problem, independent vector analysis (IVA) minimizes the
objective function (5) across frequency bins and determines time-
invariant separation matrices W (ω).

J (W ) =
∑

k

E [rk ,t ] −
∑
ω

log |detW (ω)|. (5)

where W is a set of W (ω), and rk ,t is an auxiliary variable in (6).
This can be optimized using an auxiliary function as an upper
limit of J [2]. This method outperforms gradient-decent-based
conventional methods. After the update of auxiliary variables (6),
the separation matrices are updated in two steps: direction update
rule (7) and norm normalization rule (8).

rk ,t =
√∑

ω

|wh
k (ω)x(ω, t)|2,

Vk (ω) =
T∑

t=1

[
x(ω, t)xh(ω, t)

Trk ,t

]
.

(6)
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Fig. 1. Word accuracy rate [%] in terms of methods (BM, binary masking; IVA, independent vector analysis; prop, proposed method that
combines BM and IVA) and angle of speaker to the microphone array. The iteration number of IVA and prop was 20.

Table I. Word accuracy rate [%] in terms of methods and the
number of iterations

lm = 2.85[cm] lm = 5.7[cm] lm = 37.5[cm]

iter BM IVA prop BM IVA prop BM IVA prop

5 84.8 61.1 84.2 76.4 60.9 78.2 37.0 57.6 56.8
10 - 69.1 84.3 - 69.3 79.1 - 64.0 61.8
15 - 72.6 84.3 - 72.5 79.0 - 66.8 64.4
20 - 74.1 84.4 - 73.5 78.9 - 68.0 65.3

w k (ω) ← (W (ω)Vk (ω))−1 ek , (7)

w k (ω) ← w k (ω)/

√
w h

k (ω)Vk (ω)w k (ω). (8)

Finally, projection back [3] is applied to the separated matrix.

4. Proposed method

The main reason for the degradation of physical methods is
spatial aliasing, which occurs in the frequency bands more than
fc = c

2lm
. For these bands, the performance of physical methods

is significantly degraded; on the other hand, statistical method is
robust. To address this problem, in the bands less than fc , BM is
used; otherwise, IVA is used. However, this simple combination
causes a permutation problem similar to the ICA, thus we insert
BM into the framework of IVA optimization. After BM is applied
to the bands less than fc , in the other bands IVA separates sources
where, for all ωs, auxiliary variables and separation matrices are
updated to guarantee the identity of separated speakers. Instead of
the update rule (7), the following update rule is used:

w k (ω) ←
{

(W (ω)Vk (ω))−1 ek : ω > 2π fc ,

ek : otherwise.
(9)

5. Experiments

5.1. Setup Experiments on automatic speech recognition
were performed. The impulse responses were measured in a
variable reverberant room whose reverberation time was 300 ms.
This was included in the Real World Computing Partnership
(RWCP)-SSD database (E2A). Two microphones were picked up
from the line array. The microphone intervals lm were 2.85, 5.7,
and 37.5 cm. Direction of arrival was given in this experiment,
because that can be estimated with high accuracy [4]. Impulse
responses were provided with the direction of arrival from 10
to 170◦ by 20◦. This experiment used five combinations of
them: (10,170), (30,130), (30,70), (70,130), and (70,90)◦. The
distance between the center of microphone array and the sound
source was 2 m. Utterances were taken from Japan Electronic

Industry Development Association (JEIDA)-JCSD (B-set), which
was composed of 100 area names. Although the dictionary of the
automatic speech recognition system was 100 area names, mixed
speech was made from 30 area names with different area names.
For speaker variety, 20 speaker sets were prepared from five male
and five female speakers. The window length and window shift of
short-time Fourier transform were 60 and 30 ms, respectively, and
Mel-Frequency Cepstrum Coefficients (MFCC) features were used.

6. Results and Discussion

Table I shows the relationship between the word accuracy rate
and the number of iterations for BM, IVA, and the proposed
method (prop). Note that BM needs no iterations. For IVA and
prop, 20 iterations were enough. For the lm = 2.85[cm] case, BM
achieved the highest performance, but increasing lm degraded the
performance. IVA was less susceptible for lm , but for the lm =
2.85[cm] case the performance was lower than that of BM. The
proposed method achieved performance equal to that of BM for
the lm = 2.85[cm] case and to that of IVA for the lm = 37.5[cm]
case and achieved the best performance for the lm = 5.7[cm] case.

Figure 1 shows the influence of speaker positions. When two
speakers are positioned with more than 40◦ intervals, word
accuracies were high for BM and prop; for the lm = 2.85[cm]
case, BM and prop achieved word accuracies more than 90%. IVA
was less susceptible for speaker positions.

7. Conclusion

We proposed an effective combination of the physical and sta-
tistical methods. This can combine the advantages of two methods
and improve the robustness of source separations. Speech recog-
nition experiments showed that the proposed method achieved the
upper limit of performance of the two methods.
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